微生物腐蚀是指与腐蚀体系中存在的微生物作用有关的
金属腐蚀。凡是同水、土壤和湿润空气相接触的金属构件,如地下输油、水、气管道,电缆,采油系统的油井、注水井,电力等工业用冷却水系统、贮油罐、贮气罐、喷气飞机油箱等都发现有微生物腐蚀的危害。
介绍
微生物腐蚀是一种
电化学腐蚀,所不同的是介质中因
腐蚀微生物的繁衍和新陈代谢而改变以了与之相接触的界面的某些理化性质。微生物细胞新陈代谢的中间产物和/或最终产物的分泌物以及外酵素都能够引起材料失效。习惯上将细菌腐蚀分为厌氧腐蚀和好氧腐蚀,实际上在生物膜与细菌群体之中,多种菌类是共处一起的,在发生厌氧腐蚀的同时也在发生好氧腐蚀。参与腐蚀的菌主要有以下几类:
硫酸盐还原菌、硫氧化菌、腐生菌、铁细菌和真菌。
微生物腐蚀过程被认为是以下现象组成:腐蚀,微生物污泥团,以及在厌氧系统观察到的硫化氢、
氢氧化铁或
氢氧化亚铁的存在。这个过程与产能、化学过程、石油和船舶工业以及军事有关相当重要的关系。微生物腐蚀导致的经济损失是巨大的。据统计,微生物腐蚀在金属和建筑材料的腐蚀破坏中占20%,油井中75%以上的腐蚀以及埋地管道和线缆中50%的故障来自微生物的腐蚀(主要是硫酸盐还原过程)。近几十年对材料微生物腐蚀的大量研究表明,几乎所有常用材料都会产生由微生物引起的腐蚀。因此对这几类微生物的腐蚀机理、特性以及对微生物腐蚀的防治的研究非常重要。
微生物腐蚀机理
铁细菌
铁细菌是能从氧化二价铁过程中得到能量的一群细菌,它生成的氢氧化铁可在细菌膜鞘的内部或外部储存;铁细菌是好气异养,也有兼性异养和严格自养型,在含氧量小于0.5mg/L的水泵中也能生长。氧化铁细菌或所谓金属沉积微生物普遍被看作是由微生物腐蚀造成的。因其与铁有着不解之缘而常常存在于碳钢和合金钢中。
腐蚀机理:
铁细菌腐蚀机理因铁细菌的好氧性,所以铁细菌离不开氧的作用。铁细菌具有产生铁
氢氧化物沉积物的能力,其大多数由亚铁离子氧化到Fe3+离子产生能量,而后成为Fe(OH)3沉淀,多种造型铁细菌促使已氧化亚铁离子的沉淀。研究认为,铁细菌主要以锈蚀垢形式参与,在很短时间内产生大量
铁氧化物沉积。Fe的生物性氧化率大大高于非生物性的。铁细菌的腐蚀通过
缝隙腐蚀机理而发生,氧化铁细菌的作用在于高浓度氧区和金属表面分成的小阳极点(在致密的铁氢氧化物和生成物下面)以及大范围阴极区。如铁细菌在水管内壁形成氧
浓差电池,发生的反应为:
2Fe→2Fe2++4e(阳极过程)
O2+2H2O+4e→4OH-(阴极过程)
2Fe2++4OH-→2Fe(OH)2(腐蚀产物)
4Fe(OH)2+O2+2H2O→2Fe(OH)3(腐蚀产物)
总反应式:4Fe+6H2O+3O2→2Fe(OH)3
由此可以想到,与活性溶解碳钢相比,在易于产生
缝隙腐蚀的不锈钢和其它钝化金属上
铁细菌腐蚀的速度快慢。而水中碳钢腐蚀的速度快慢还与其它微生物活性相关联。
硫杆菌
硫杆菌可分为
氧化硫硫杆菌(T.thiooxidans)、
脱氮硫杆菌(T.dentrificans)和
氧化亚铁硫杆菌(T.ferroxidans)。其中氧化硫硫杆菌存在于清水中,脱氮硫杆菌则存在于矿物水、海洋和污泥油田、油水中。脱氮硫杆菌是严格自养兼厌氧菌,菌细胞为球杆状,具单根极生鞭毛,运动活泼,无牙孢,
革兰氏染色阴性。它们不同于常见的利用有机物作为能源生长的异养菌,而是能利用还原新型无机硫化物作为能源,包括许多硫酸盐和硫化物,将它们氧化成SO42-,或将硫化氢氧化成高价态硫化物;在厌氧条件下需要硝酸盐和溶解气态氮,NO3-作为电子受体被还原成N2,
反应式为:5HS-+8NO3-+3H+→5SO42-+4N2+4H2O
硫酸盐还原菌
硫酸盐还原菌(SRB)有两种类型:无芽孢的去磺弧菌属和有芽孢的斑去磺弧菌属。去磺弧菌是油田中最常见的具有严重腐蚀性的细菌,它严格厌氧。在
厌氧微生物腐蚀中,SRB是最具破坏性的微生物,它把硫酸盐还原为硫化物,促使硫化膜的形成。
腐蚀机理作为厌氧性的细菌,若没有阴极去极化作用则腐蚀就会停止,这是生物酶的催化则是腐蚀继续进行的推动力。其阴极去极化过程为:
4Fe→4Fe2++8e(阴极过程)
8H2O→8H++8OH-(水电离)
8H++8e→8H(阴极过程)
SO42-+8H→S2-+4H2O(细菌的阴极去极化)
Fe2++S2-→FeS(腐蚀产物)
3Fe2++6OH-→3Fe(OH)2(腐蚀产物)
总反应式:4Fe+SO42-+4H2O→3Fe(OH)2+FeS+2OH-
研究结果表明,厌氧生物腐蚀已被证实由微生物去极化产生。有关H2S和H+对阳极金属溶解影响方面和
电化学腐蚀机理也已建立。
过氧化氢酶
过氧化氢生物菌(生物酶)是细菌细胞氧化作用的一个完整组合,主要由稳定态细胞产生。它同过氧化非变位酶和烷基过氧化氢一起被认为限制了活性氧类的堆积。生物霉菌通过促使它分解为水和氧而减少细胞内过氧化氢的浓度,如:2H2O2→2H2O+O2
由Cu和Cu合金的时效试验可以得知,界面H2O2浓度和
过氧化氢生物酶的影响由在电极表面Cu2O/CuO两种氧化物相关区域分配而决定;在浮游生物培养中,提出因生物酶作用的
氧化还原反应去极化的生物酶腐蚀机理。并且认为这种去极化影响是可逆的,通过迭氮化钠可逆变;其化合物和产生缓蚀酶的
过氧化氢酶进行可逆反应。
微生物腐蚀的防护
由于微生物的多样性和复杂性,很难完全消除微生物腐蚀。目前在微生物腐蚀的控制方面还没有一种尽善尽美的方法,通常采用杀菌,抑菌,覆盖层,电化学保护和生物控制等的联用措施。
① 杀菌或抑菌
利用抑制剂使微生物不活动或活性降低,如加入量约2×106的铬酸盐能有效抑制
硫酸盐还原菌生长,硫酸铜等铜盐能抑制藻类生长,采用紫外线,超声波和辐射等物理手段来杀死
腐蚀微生物。利用杀菌剂消灭腐蚀微生物,根据微生物的种类,特点和生存环境选择针对性的杀菌剂,要求杀菌剂有高效,低毒,稳定,自身无腐蚀性。杀菌后易处理和价廉等特点,这种方法现在应用较多,如通氯或电解海水产生氯能杀死铁细菌等细菌,季胺盐杀硫酸盐还原菌,剥离黏泥,
有机锡化合物杀藻类,毒菌和侵蚀木材的微生物。
有机硫化合物能有效杀死真菌,黏泥形成菌,硫酸盐还原菌等。在密闭或半密闭的系统,涂料或保护层中,通常将杀菌剂,缓蚀剂,剥蚀剂,防腐剂或去垢剂等组合起来使用,提高防蚀效果。不同杀菌剂之间也会产生协同效应,这些在冷却水或循环水系统应用较广,有些杀菌剂在杀菌的同时也会带来其他副作用,如尽管氯是广泛应用的一种强
氧化性杀菌剂,但是氯也会带来腐蚀和不同程度地破坏冷却水中的某些有机阻垢剂或缓蚀剂。
② 抑制微生物生长环境
微生物生长繁殖都需要一个适宜的环境条件,所以通过减少微生物营养源或破坏微生物的生存,新陈代谢过程及其产物等改善环境条件的措施可以有效的减少微生物腐蚀的危害,限制金属构件周围的微生物生长的营养物可以抑制微生物的生长。如尽量控制环境中的有机物(
碳水化合物、烃类、腐蚀质、藻类)、铵盐、磷、铁、亚铁、硫及硫酸盐等可极大的降低微生物增长,改变微生物生存环境的温度、湿度、PH值、含盐量、含氧量等可以降低微生物的危害,例如控制PH值在5.5~9范围以外温度50℃以上能强烈抑制菌类生长,切断硫源能阻止硫杆菌的破坏。湿润粘土地带加强排水或回填砂砾于埋管线周围有利于改善空气条件,可减少硫酸还原菌产生的厌氧腐蚀。
③ 覆盖层保护
采用镀层或涂层等覆盖层将金属与腐蚀环境隔开,而且,覆盖层使金属表面光滑以减少微生物附着,覆盖层中还可能含有某些杀菌的物质,如金属表面电镀铬、镀锌、衬水泥、涂环氧树脂、沥青、聚乙烯等防腐措施。
④ 电化学保护
将电位控制在使阴极表面附近呈碱性环境就可以有效抑制微生物的活动,如采用-0.95V(相当于Cu/CuSO4参比电极)以下的电位对钢铁构件进行保护。该方法与覆盖层方法联合使用效果更好。
⑤ 生物控制
微生物不全是有害的,现在也有利用微生物及技术进行防腐的研究,生物控制主要使采用生物防治、遗传工程和基因工程等方法改变危害菌的附着力,生存环境或新陈代谢过程及产物来达到防护的目的。譬如,日本研制开发的利用能吞食海水中
腐蚀微生物的噬菌体清除金属管件表面的有害微生物来防止微生物腐蚀的效果就很好,而且这些细菌能选择性的杀死附着的有害微生物,而不会像其他方法那样影响其他生物。