约翰尼斯·开普勒(德语:Johannes Kepler),德国
天文学家、数学家与占星家,1572年1月6日(儒略历1571年12月27日)生于
神圣罗马帝国符腾堡(现属德国)的威尔德斯达
特镇,1630年11月15日因病卒于
巴伐利亚公国雷根斯堡,享年58岁。
人物生平
早年及求学时期
约翰内斯·开普勒生于公元1572年1月6日(儒略历1571年12月27日),也就是当年的圣若望庆日,在
神圣罗马帝国自由城威尔德斯达特(Weil der Stadt,今德国
巴登-符腾堡州的一部分,位于
斯图加特市中心以西30千米)出生,在他前面有两个哥哥和一个姐姐。他的祖父西博尔德·开普勒(Sebald Kepler)曾经是这个城镇的市长,但是约翰内斯·开普勒出生时,开普勒家族的家业已经开始衰落。他的父亲海因里希·开普勒(Heinrich Kepler)为了营生,当了一名危险的
雇佣兵,在约翰内斯5岁的时候就离开了家庭,据说后来死于
荷兰的
八十年战争。约翰内斯的母亲凯瑟琳娜·古尔登曼(Katharina Guldenmann)是一名旅店老板的女儿,同时是一名医生和
草药商。约翰内斯是
早产儿,孩提时体弱多病。然而,他超常的数学才能经常给他外祖父旅馆内的客人留下深刻的印象。
他在很小的时候就接触到并喜爱上了天文学,而这种喜爱贯穿了他的一生。在他6岁时,他看到了
1577年大彗星(C/1577 V1),并写道他“被妈妈带到一处高地看
彗星。”在他9岁时,他观察到了另外一次天文事件——1580年的月食,并记录道他记得他被“叫到门外”看月食,月亮“看起来非常红”。然而,童年患上
天花,使他的视力衰弱,双手残疾,因此限制了他天文观察的能力。1589年,在经过
文法学校、拉丁学校以及毛尔布劳恩(Maulbronn)神学院的学习之后,开普勒进入了
图宾根大学的
图宾根神学院。在那里,他师从维塔斯·穆勒(Vitus Müller)学习哲学,跟随雅各布·黑尔布兰德(Jacob Heerbrand)学习神学。雅各布是
菲利普·梅兰希通(Philipp Melanchthon)在威登堡的学生。雅各布·黑尔布兰德还有另外一名学生叫迈克尔·马斯特林(Michael Maestlin),后者在1590年成为图宾根大学校长。
开普勒证明了自己是一名杰出的数学家,并作为一名熟练的占星家给同窗占星,为自己赢得了声誉。在1583-1631年间担任图宾根大学数学教授的迈克尔·马斯特林的教导下,他学习了关于行星运动的
托勒密体系与哥白尼
日心说。在那段时间,他自己成了
哥白尼的拥护者。在一次学生辩论中,他从理论和神学两个角度捍卫日心说,坚称太阳是宇宙动力的主要来源。虽然他很想成为一名牧师,在他学业将要结束之际,开普勒被推荐担任格拉茨新教学校(后来成为
格拉茨大学)的数学与天文学教师。他于1594年4月接受了该职位,时年23岁。
与芭芭拉·穆勒的婚姻
1595年12月,开普勒被介绍给了芭芭拉·穆勒(Barbara Müller),一个带着幼小女儿吉玛·德威纳维尔德(Gemma van Dvijneveldt)的23岁寡妇(结过两次婚),并开始向她求爱。穆勒不但是她前两任丈夫财产的女继承人,同时也是一名成功磨坊老板的女儿。尽管开普勒有着高贵的身份,但是她父亲约布斯特(Jobst Müller)最初也反对他们的婚姻。因为虽然开普勒继承了他祖父的高贵身份,但是他的贫困使他与芭芭拉不般配。开普勒完成《宇宙的奥秘》之后,约布斯特动了怜悯之心,但是这个
婚约差点告吹,因为开普勒外出专注于出版的各项事宜。然而,帮忙说媒的教会官员强迫穆勒一家遵守他们的协议。
1597年4月27日,芭芭拉和开普勒结婚。在他们婚姻的早年,他们生育了两个子女(海因里希与苏珊娜),但是都在襁褓里夭折了。1602年,他们又生了一个女儿(苏珊娜),1604年,生了一个儿子(弗里德里希),1607年又生了一个儿子(路德维格)。
格拉茨时期的研究
《
宇宙的奥秘》出版之后,在格拉茨新教学校督导的支持下,开普勒开始了雄心勃勃的计划,进一步发展和完善他的作品。他计划编写另外4部书籍:一部关于宇宙的静止天体(太阳和固定的恒星);一部关于行星及其运动;一部关于行星的物理属性与地理特征的形成(侧重于地球);一部是关于天空对地球的影响,涵盖大气光学、
气象学和
占星术。
他还收集许多他曾经赠送《宇宙的神秘》的天文学家们的意见,其中包括
鲁道夫二世的皇家数学家瑞玛奴斯·乌尔苏斯(Reimarus Ursus),又名尼古拉斯·赖默斯·柏尔(Nicolaus Reimers Bär),同时也是
第谷·布拉赫的激烈
竞争对手。乌尔苏斯没有直接回复他,但是重新发表了开普勒的奉迎信,以寻求他与第谷关于
第谷体系争论中的优势。尽管有这个污点,第谷还是开始与开普勒通信,一开始就对开普勒体系进行严厉但合理的批判。在许多反对的理由中,第谷对其使用哥白尼不准确的数据提出了异议。通过书信往来,第谷和开普勒就广大范围内的天文学问题进行了讨论,并重点讨论了
月相与哥白尼学说(特别是其神学活力)。但是没有第谷天文台更精确的数据,开普勒无法涉及其中的许多议题。
结果,开普勒将精力转向年代学与“和谐”,即音乐、数学及
物质世界之间的命理关系,以及它们的占星结果。通过假设地球拥有精神(一种他后期用于解释太阳引起行星运动的属性),他建立了一个将占星内容和
天文距离与天气与其它地球现象联系起来的推测系统。然而,到了1599年,他又发现他的工作受到数据不
准确性的限制,正如不断增长的宗教紧张气氛正威胁他在格拉茨的工作一样。就在同年的12月份,第谷邀请开普勒在布拉格会面。1600年1月1日(甚至在他收到
邀请函之前),开普勒就启程,希望第谷的资助能够帮解决他的哲学问题以及社会与
经济问题。
效力于第谷·布拉赫
1600年2月4日,开普勒在伊泽拉河畔贝纳特基(距离布拉格35千米)见到了
第谷·布拉赫(Tycho Brahe)及其助手弗朗茨·滕纳格尔(Franz Tengnagel)与朗高蒙田纳斯(Christen Sørensen Longomontanus)。伊泽拉河畔贝纳特基是第谷的新天文台所在地。开普勒以客人的身份在这里住了两个月,分析了第谷的一些火星发现;第谷严密地保护着他的数据,但是对开普勒的理论思想印象深刻,所以之后给了他更多接近的空间。开普勒计划借助火星
数据测试他在《宇宙的神秘》中的理论,但是他预计这项工作将花费2年时间(因为第谷不允许他单纯的将资料拷贝作为己用)。在约翰内斯·杰森纽斯(Johannes Jessenius)的帮助下,开普勒尝试与第谷协商一个更为正式的雇佣安排,但是协商在激烈的争吵中破裂。于是开普勒在4月6日就前往布拉格。之后,开普勒和第谷很快就和解了,并最终就工资和生活安排达成了协议,6月,开普勒回到格拉茨去接他的家人。格拉茨政治上和宗教上的麻烦打碎了他立刻回到第谷天文台工作的想法,为了继续他的天文学研究,开普勒以数学家的身份向斐迪南大公(Archduke Ferdinand)寻求了一份工作。为此,开普勒专门写了一篇文章给斐迪南。他在文中提出了一个月球
运动力学理论:“地球上有一种力量,引起了月球的运动”。虽然这篇文章并未使他在费迪南宫廷获得职位,但是却详细介绍了一种测量月食的新方法,他将这种方法运用到了1600年7月10日格拉茨的
月食天象。这些观察成了他进行光学规律探索的基础,而《天文学的光学需知》则是他光学探索的顶峰。
1600年8月2日,在拒绝皈依天主教之后,开普勒和他的家人被驱逐出
格拉茨。几个月后,开普勒及他的家人来到了
布拉格。差不多1601年一整年,他得到了第谷的直接资助,第谷安排他分析行星观测结果与编写反对对手乌尔苏斯的小册子,尽管不久第谷就去世了。9月,第谷帮开普勒获得了作为他先前向皇帝提议的新项目的合作者的委任《鲁道夫星表》,将取代伊拉斯谟·赖因霍尔德(Erasmus Reinhold)所作的《普鲁士星表》。1601年10月24日第谷出人意料的逝世了,两天之后,开普勒被委任成为他的继任者,作为皇家数学家负责完成第谷未完成的工作。接下来作为皇家数学家的11年是开普勒一生中最为多产的时间。
皇帝鲁道夫二世的顾问
作为皇家数学家,开普勒的主要职责是向皇帝提供
占星术方面的建议。虽然开普勒对同时代占星家对未来或特定神学事件进行准确预言的努力采取怀疑态度,但是当他还是图宾根大学的一名学生时,他已经向他的朋友、家人和赞助人展示了极受欢迎的占星水平。除了给盟国和外国领导人占星外,皇帝在遇到政治麻烦时,也向开普勒寻求建议。
鲁道夫二世(Rudolf II)对许多其宫廷学者(包括炼金术士)的工作有着积极兴趣,并跟踪开普勒在物理天文学方面的工作。
布拉格正式被认可的
宗教教义是天主教和主稳健派,但是开普勒凭借他在宫廷的地位可以信仰他的路德教而不受阻碍。皇帝名义上为其家庭提供了丰厚的收入,但是皇家国库开支过度,这意味着想要实际上获得足够的钱应对经济负担还是需要不断的争取。一部分源于经济困难的原因,他和芭芭拉的家庭生活并不如意,经常为争吵和疾病所扰。然而,宫廷生活为开普勒带来了与其他著名学者接触的机会,其中包括约翰内斯·马修斯·瓦克·瓦克亨菲尔斯(Johannes Matthäus Wackher von Wackhenfels)、乔斯特·伯奇(Jost Bürgi)、大卫·
法布里希斯(David Fabricius)、马丁·巴查杰克(M. Bachazek)以及约翰内斯·布伦格(Johannes Brengger),因此他的天文学工作进展迅速。
家庭不幸
1611年,布拉格政治与宗教之间日益紧张的关系达到了白热化的程度。皇帝
鲁道夫二世(Emperor Rudolf II)的健康状况也在衰退,被他的弟弟
马蒂亚斯(Matthias)逼迫退位作为
波西米亚王国国王。双方都寻求开普勒占星术方面的建议,他刚好利用这个机会向他们提出和解的政治建议(跟星象无多少关系,除了劝阻激烈行动的一般陈述之外)。然而,很清楚的是开普勒在马蒂亚斯宫廷的前景已变暗淡。就在同一年,芭芭拉感染了
匈牙利斑疹热,之后开始突然发作。当芭芭拉正在康复的时候,开普勒的三个孩子都患了
天花,弗里德里希6岁时最终夭折了。之后,开普勒写信给
纽伦堡和帕多瓦的潜在赞助人。位于纽伦堡的图宾根大学,担心开普勒已经接触了违反《奥格斯堡信纲》与《协同信条》的
加尔文主义异端学说,因而阻止他回归。而
帕多瓦大学在将要去世的伽利略的推荐下,希望开普勒能够填补数学教授职位的空缺,但是开普勒不喜欢他的家庭离开德国的领土,因而他来到了奥地利的
林茨,确定在这里当一名教师和教区数学家。然而,芭芭拉病情再次复发,在开普勒回去之后不久就去世了。
皇帝马蒂亚斯的重新聘用
开普勒推迟了搬到
林茨的计划,继续留在布拉格直到
鲁道夫二世于1612年初去世。同时遭遇了政治剧变、宗教紧张以及家庭悲剧(以及关于他妻子财产的法律纠纷),开普勒无法继续做研究。所以他将他的书信及早期的作品拼凑成了一份编年手稿《编年 纪选集》(Eclogae Chronicae)。在马蒂亚斯继任
神圣罗马帝国皇帝之后,马蒂亚斯重新确认了开普勒皇家数学家的职位(及薪奉)并允许他搬到林茨。
林茨时期的研究
在
林茨,开普勒的主要职责是在
教区学校任教并提供占星术和天文学服务。在那里的头些年,相比在布拉格的生活,他的经济条件更宽松,宗教更自由,虽然鉴于他神学上的顾虑,路德会教堂禁止他参加
圣餐。公元1613年,他在林茨发表的第一部作品为《德维罗纪元》,该作品对耶稣诞生的年份进行了进一步的阐释。他还参加审议,确定是否将教宗
格列高利十三世(Pope Gregory XIII)的改革历法引入德国的
新教徒地区。同年,他还写了影响巨大的数学著作《求酒桶体积之新法》(Nova stereometria doliorum vinariorum)。该著作发表于1615年,介绍了测量容器容积的方法,如酒桶。
第二段婚姻
1613年10月30日,开普勒娶了24岁的苏珊娜·罗伊特林格(Susanna Reuttinger)。在其第一任妻子芭芭拉死后,开普勒在两年间已经考虑了11个不同的对象(做决定的过程后来成了
婚姻问题)。他最终回过头来选择了罗伊特林格(第五个对象)。开普勒曾写道,“她用爱、谦逊的忠诚、节俭持家、勤劳及给继子们的爱俘获了我”。他这段婚姻的前三个孩子格丽塔·里贾纳(Margareta Regina)、凯塔琳娜与西博尔德(Sebald)在童年时代就夭折了。另外三个孩子存活下来并长大成人:克尔杜拉(Cordula,生于1621年)、弗里德曼(Fridmar,生于1623年)、希尔伯特(Hildebert,生于1625年)。根据开普勒传记的作者,开普勒这段婚姻比第一段幸福。
经济纠纷及母亲的巫审案
1615年,一个与开普勒的弟弟克利斯朵夫(Christoph)产生
经济纠纷、名叫厄休拉·莱因戈尔德(Ursula Reingold)的女子,声称开普勒的母亲卡塔琳娜用一种邪恶的饮料致使她生病。之后,争吵升级。1617年,卡塔琳娜被控施行巫术,
女巫审判在该时期的
中欧非常普遍。从1620年8月开始,她被囚禁了14个月。1621年10月,她被释放,一部分原因是开普勒所进行的广泛的法律辩护。原告没有证据,只有谣言。卡塔琳娜遭受了言语恫吓(形象描述等待她的、施予女巫的折磨),以最终逼迫她认罪。在这次审判期间,开普勒推迟了他的其它工作,转而专注于他的“和谐理论”,并在1619年发表了他的作品《
世界的和谐》。
不成功的历法
作为《鲁道夫星表》及其相关
星表的副产品,开普勒发表了
天文历法,这套历法非常受欢迎,并抵消了他创作其它作品的费用,特别是当皇家国库的资助被中止后。根据他的历法,1617年-1624年间的6年中,开普勒预测了行星位置和天气以及
政治事件,后者经常非常准确,得益于他敏锐的掌握了那个时期政治与神学的紧张关系。然而到1624年,紧张关系的升级以及预言的不准确意味着给开普勒自身带来的政治麻烦,他最后的历法在
格拉茨被公开烧毁。
三十年战争与晚年
神圣罗马帝国皇帝
马蒂亚斯(1612年~1619年在位)企图在
波希米亚(今
捷克)恢复天主教,指定
斐迪南二世为波希米亚国王。斐迪南二世下令禁止布拉格新教徒的
宗教活动,拆毁其教堂,并宣布参加新教集会者为暴民。1618年5月23日,武装暴徒冲进王宫,把皇帝的钦差从窗口抛入壕沟,史称“
掷出窗外事件”,
三十年战争正式开始。1628年,随着皇帝
斐迪南二世(Ferdinand II)的军队在
华伦斯坦将军的指挥下获得军事上的胜利,开普勒成为华伦斯坦的官方顾问。虽然本质上不是
将军府的占星家,但是开普勒为华伦斯坦的占星家们提供天文学计算,并偶尔为华伦斯坦本人撰写
天宫图。在他生命的最后几年,开普勒花了很多时间旅行,从布拉格皇宫到林茨,从乌尔姆到萨根临时的家,以及最后到
雷根斯堡。到雷根斯堡不久以后,开普勒就患病了。他于1630年11月15日去世,并安葬在那里,之后墓地被瑞典军队毁坏。
Mensus eram coelos, nunc terrae metior umbras
Mens coelestis erat, corporis
umbra iacet.
“我曾测天高,今欲量地深。”
“我的灵魂来自上天,凡俗肉体归于此地。”
代表著作
《宇宙的奥秘》
开普勒的第一部重要的天文学著作是《宇宙的奥秘》(Mysterium Cosmographicum),是第一部捍卫哥白尼学说、
公开发表的作品。开普勒声称在格拉茨教学的1595年7月19日顿悟,在
黄道十二宫图中展示了
木星合土星(大合,Great conjunction)的
周期变化。他意识到正多边体按照规定的比率与一个
内切圆和
外切圆相连,他推测这可能是宇宙的
几何基础。在寻找符合已知的天文学发现(甚至使用加入该系统的额外行星)、独特排列的多面体的努力失败后,开普勒开始用立体的
多面体进行实验。他发现五个
柏拉图多面体中的每一个都可通过球体进行独特的内切和
外切。先构建这些多面体,每一个多面体装在一个球体里,这个球体又装在另一个多面体内,每个多面体可产生6层,分别对应6个已知的星球(
水星、金星、地球、火星、
木星和土星)。对这些多面体(
八面体、
二十面体、
十二面体、
四面体和
六面体)进行正确的排序,开普勒发现假设这些星球环绕着
太阳,那么球体可以按照一定的间距进行排列,间距对应于每个星球路径的相对尺寸(在已知的天文学观测结果的
精确度范围内)。
开普勒还发现了一个公式,将每个星球的轨道大小与其
轨道周期进行关联,从
内行星到
外行星,轨道周期的
增长率是轨道
半径差的两倍。然而,开普勒后来又否定了这个公式,因为这个公式不够精确。正如他在标题中所表明的,开普勒认为他已经揭示了上帝对宇宙的几何设计。开普勒对于哥白尼学说的许多热情源于他对于物质与精神之间的联系的神学信仰。宇宙本身是上帝的一个影像,太阳对应
圣父,星球对应圣子,它们之间的间隔对应圣灵。《宇宙的奥秘》的最初手稿包含了一延伸章节,用以调和太阳中心说与貌似支持
地球中心说的圣经选段。在其老师迈克尔·马斯特林的支持下,开普勒获准在
图宾根大学理事会发表他的手稿,期间他删掉了《圣经》注释,增加了对哥白尼学说及他的新想法更简单易懂的描述。
《宇宙的奥秘》于1596年年底发表,开普勒在1597年年初收到了发表的版本,并将其发送给著名的
天文学家与赞助人。该书并未被广泛阅读,但是它建立了开普勒作为一名高水平的天文学家的声誉。对赞助人及格拉茨新教学校提供给他职位的人充满热情的付出,也是他进入学术赞助体系的关键之路。
在《宇宙的奥秘》中,开普勒从未放弃柏拉图式的多面体-球体
宇宙学说,虽然根据他后来的作品,其中的一些细节可能需要修改。他后来的主要作品,通过计算行星轨道的
偏心率,发现更精确的球体内外尺寸,但在某种意义上都是对该作品的进一步发展。
1621年,开普勒发表了扩展后的第二版《宇宙的奥秘》,内容比第一版长一半,在
脚注部分详细记录了在第一版发表之后的25年内他所作的修正与改进。
关于其影响,《宇宙的奥秘》可以视为将
日心说理论现代化的重要的第一步。当
尼古拉斯·哥白尼(Nicolaus Copernicus)在其作品《
天体运行论》中发展日心学说的时候,他用
托勒密工具(即周转圆与离心圆)解释星球轨道速度的变化,并继续用地球轨道中心作为
参考点,而不是用太阳中心“辅助计算以便使读者不会因偏离托勒密太多而感到混淆。”现代
天文学家将很大部分成绩归功于《宇宙的奥秘》,尽管它的主要论点有瑕疵,“因为它代表了清除哥白尼学说中托勒密理论残留的第一步。”
《天文学的光学需知》
在开普勒继续慢慢分析第谷的火星
观测数据,他可以使用第谷完整的资料,并开始了《鲁道夫星表》的缓慢编制过程的同时,他还从其1600年关于
月球的文章中拾起了对光学规律的研究。不论是
月食或是
日食现象都展现了无法解释的现象,例如不可预期的阴影大小、
月全食的红色、以及传说中环绕
日全食的罕见光线。
大气折射的相关议题适用于所有天文学观测。1603年的大部分时间,开普勒暂停了他的其它工作,而专注于光学理论研究;并由此撰写的手稿在1604年1月1日呈给了皇帝,并以《天文学的光学需知》(Astronomiae Pars Optica)为题发表。文中,开普勒对控制
光强的
平方反比定律、
平面镜与
曲面镜的反射、
针孔成像原理以及光学的天文学含义,如
视差与天体的可见大小,进行了描述。他还将光学研究延伸到人的眼睛,并被神经学家广泛认为是意识到图像由眼睛
晶状体翻转投射到
视网膜上的第一人。这个困境的解决办法对于开普勒来说并不是特别重要,因为他并不将其视为属于光学的范畴,虽然他确实表明,影像由于“
精神运动”在“脑穴”中得到修正。《天文学的光学需知》通常被认为是现代光学的基础(虽然它明显地没有包含
折射定律)。关于投影
几何学的根源,开普勒在他作品中引入了数学实体连续变化的概念。他主张到,如果一个圆锥截面的焦点可以沿着连接焦点的线运动,那么这个
几何形状会把一个焦点改变或退化成另外一个。因此,当一个焦点沿着
无穷大运动时,椭圆形就变成了一条
抛物线,当一个椭圆的两个焦点互相融合时,就形成了圆圈。
《蛇夫座脚部的新星》
1604年10月,出现了一颗明亮的新的昏星(史称
开普勒超新星,编号
SN 1604),但是开普勒不信谣言,直至他亲眼看到了这颗昏星。他开始系统的观察这颗新星。从
星相学的角度看,1603年的结束标志着火元素三宫组的开始,亦即
木星合土星新的800年大周期的开始;占星家们将之前两次这种时期与
查理曼大帝的崛起(大约800年前)和耶稣的诞生(大约1600年前)联系起来,所以他们期待有重大预兆的事件出现,特别是关于皇帝。正是在这种情况下,开普勒作为皇家数学家与占星家在其两年后《蛇夫座脚部的新星》(De Stella Nova in Pede Serpentarii)的书中描述了这颗新星。文中,开普勒在对其他许多占星方面的解释与流传持怀疑态度的同时,专注于描述这颗新星的天文学属性。他注意到了其逐渐减弱的亮度,推测它的起源,并根据视差的缺失论证它属于固定的星体,进一步削弱了天体永恒性的教义(自
亚里士多德以后人们一直认可天体是完美与永恒的观念)。一颗新星的出现意味着天体的可变性。在附录中,开普勒还讨论了
波兰历史学家劳伦休斯·苏斯莱格(Laurentius Suslyga)最近的年代学工作。他计算到,如果苏斯莱格是正确的,年表提前四年,那么圣经《新约·马太福音·第二章》记载的
伯利恒之星(类似于新星)将已经正好碰到了第一次大合(
木星合土星)800年的大循环周期。
《新天文学》
《新天文学》(Astronomia nova)是根据第谷的方向进行的火星轨道研究(包括最初两个关于行星运动的定律)发展的顶峰。开普勒运用等分点(哥白尼把这种
数学工具排除在他的学说之外)对各种安火星轨道
近似值进行重复计算,并最终创造了一个在2角分之内(平均测量误差)基本上与第谷的发现相一致的模型。但是他对这个复合体以及仍然有点
不准确的结果感到不满意。因为在某些点,这个模型与数据的差异达到8弧分。一系列传统的数学
天文学方法都使开普勒感到失望,他开始尝试为这些数据设置一个卵形轨道。根据开普勒对宇宙的宗教观点,太阳(父神的象征)是
太阳系的动力来源。作为物理基础,开普勒通过类比汲取了
威廉·吉尔伯特(William.
Gilbert)《论磁石》(De Magnete,1600年)中
地球磁性灵魂的理论以及自己关于光学研究的工作。他假设太阳发射的动力(或动力个体)随着距离减弱,当行星靠近或远离太阳,运动会加快或减慢。可能这个设想的前提需要一种修复天文学秩序的数学关系。根据对地球和火星
远日点和
近日点的测量,他创立了一个公式。根据这个公式,行星的
运动速度与它距太阳的距离成反比。然而,想要在整个轨道周期证实这种关系,需要进行非常广的计算。为简化计算任务,1602年底,开普勒运用
几何学重新阐述了这个比例,行星在同样的时间内扫过同样的面积,这就是关于行星运动的
开普勒第二定律(
面积定律)。
之后,他运用几何速率法则,假定轨道是卵形轨道,开始计算火星的整体轨道。在经历大约40次的尝试失败以后,1605年初,他最终偶然想到了
椭圆轨道这个概念,他之前认为这个
解决方法太简单,以至于早期的天文学家们都忽略了。在发现椭圆形轨道适用于火星的数据之后,他立即推断出所有行星都以太阳为中心按照椭圆轨道运动,这就是关于行星运动的
开普勒第一定律(椭圆定律)。然而,他没有聘用计算方面的助手,所以他未将该
数学分析扩展到火星之外。当年年底,他完成了《新天文学》的手稿,但是由于第谷
天文台(第谷后人的财产)的法律争议,直到1609年才发表。
《第三方调解》
在《新天文学》完稿之后的几年,开普勒大部分的研究都集中在《鲁道夫
星表》的编撰以及基于该星表的一整套
星历(对行星和
星位的具体预言,但是这两项工作在多年之后都没完成)。他还尝试(
不成功)与
意大利天文学家乔瓦尼·安东尼奥·马吉尼(Giovanni Antonio Magini)的合作。他的其它作品涉及年代学(特别是耶稣一生中事件的日期记录)与占星学,特别是对轰动性的大灾难预言的批判,比如哈利萨耶斯·罗斯林(Helisaeus Roeslin)的预言。正当开普勒和罗斯林忙于发表一系列攻击与回击时,菲利普·法赛里尔斯医生(P. Feselius)发表了一部作品,对占星学进行了全面地反驳(特别是罗斯林的作品)。一方面是出于对其所认为是占星学的多余的回应,另一方面是出于对过度的反对声音的回应,开普勒撰写了《第三方调解》(Tertius Interveniens)。表面上,这篇文章——主要是给罗斯林和法赛里尔斯的普通赞助人看的——是对争论的学者之间的一次中立调解,但是文中体现了开普勒对占星学价值的基本观点,文章包含了行星与个体精神之间互动的一些假设机制。开普勒认为多数传统的占星学法则与方法是被“一只勤劳的
母鸡”扒烂的“臭粪”,但是实际上认真的科学的占星家“偶尔会找到谷粒,甚至是珍珠或金块”。
《与星夜信使的对话》
1610年的头几个月,
伽利略·伽利雷(Galileo di Vincenzo Bonaulti de Galilei)用他强大的新望远镜,发现了四颗绕着
木星运动的卫星。在伽利略发表报告《星夜的差使》(Nuncio Sidereo)时,咨询了开普勒的意见,某种程度上是为了增加其观测发现的
可信度。开普勒给予了积极的回应,撰写并发表了一篇简短的回复——《与星夜信使的对话》(Dissertatio cum Nuncio Sidereo)。他支持伽利略的观测,并对伽利略的发现以及望远镜观测方法对于天文学和光学以及
宇宙学和
占星学的含义进行了一系列的推断。同年年底,开普勒在《四颗卫星的观测报告》中发表了其利用望远镜对月球的发现,进一步支持伽利略的发现。但是令开普勒失望的是,伽利略从未发表过其对《新天文学》的(任何)反应。
《折射光学》
在听说了伽利略用望远镜得到的发现之后,开普勒从
科隆欧内斯特(Ernest)公爵那里借来了一个望远镜,开始对望远镜光学进行理论和
实验研究。1610年9月,作为研究成果的手稿完成,并在1611年以《折射光学》(Dioptrice)为题发表。文中,开普勒提出了双凸
会聚透镜与双凹
发散透镜的理论基础,以及它们如何组合制作出一个
伽利略望远镜,以及真实与
虚像、直立与倒像的概念和焦距对放大与缩小的影响。他还介绍了一个改进型的望远镜(
开普勒望远镜),该望远镜有两个
凸透镜,可以比伽利略的凸凹组合透镜产生更大的
放大率。
《梦》
1611年左右,开普勒传阅了他的一份手稿,这份手稿最终以《梦》(Somnium)为题(在他过世之后)发表。这篇文章的部分目的是想描述从另外一个星球的视角来看,时下的天文学会是什么样子,以说明非地心学说的可行性。这份在转手几次后丢失了的手稿描述了一次神奇的月球之旅,一部分是寓言,一部分是自传,一部分是星际之旅的专著。这本书有时候也被后世称为第一部科幻作品。多年之后,该故事的一份被歪曲的版本引发了一场针对自己母亲的审巫案,起因是故事讲述者的母亲向一名恶魔学习太空旅行的方法。随着他母亲最终被判无罪,开普勒为该故事撰写了223个脚注,比实际的文本长7倍,对故事中隐藏的寓言性内容以及很多科学内容(尤其是关于月球地理)进行了解释。
《哥白尼天文学概要》
自从完成了《新天文学》之后,开普勒就开始计划编制天文学
教科书。1615年,他完成了《哥白尼天文学概要》(Epitome astronomiae Copernicanae)三卷中的第一卷。第一卷(第1-3册)在1617年印刷,第二卷(第四册)1620年印刷,第三卷(第5-7册)在1621年印刷。尽管这个书名简单涉及了
日心说,开普勒的这套教科书成了他自己椭圆定律的巅峰之作,是其最富影响力的作品。它包含了全部三条
行星运动定律,并尝试用物理因素解释天体运动。虽然它明确的将行星运动的头两条定律(在《新天文学》中适用于火星)扩展到其它行星、
月球及
木星的美第奇卫星(
伽利略卫星),但是它并没有解释椭圆轨道如何从观测资料中获取。
《世界的和谐》
开普勒深信“几何事物向
造物主提供了装饰整个世界的模型”。在《世界的和谐》中,他尝试用
音乐解释自然世界的比例,特别是天文学与占星学方面。“和谐”的中心是“天体音乐”,而
毕达哥拉斯、
托勒密以及开普勒之前的许多人都对“天体音乐”进行过研究。实际上,在《
世界的和谐》(Harmonices Mundi)刚发表之后,开普勒就卷入了与罗伯特·弗勒德(R.Fludd)的先后顺序纠纷,因为后者最近刚发表了他的和谐理论。开普勒从研究
正多边形和多面体开始,包括后来被人们所熟知的开普勒
多面体。从那里,他把他的和谐分析扩展到
音乐、
气象学和
占星学,和谐产生于天体灵魂所作的音调。对于占星学来说,和谐源于这些音调与人类灵魂的互动。在这部作品的最后部分(第5册),开普勒介绍了行星运动,特别是轨道速度与距太阳的轨道距离之间的关系。其它天文学家也使用了类似的关系,但是开普勒利用第谷的资料和他自己的天文学理论,更加准确的处理这些关系,并赋予了他们新的物理学意义。在许多其它和谐中,开普勒清楚的说明了人们所知的行星运动
开普勒第三定律(调和定律)。之后,他尝试了许多组合,直到发现(近似地)“周期的平方与平均距离的平方成正比”。虽然他给出了这次发现的日期(1618年3月8日),但是并未详细描述他是如何得出这个结论的。然而,直到17世纪60年代,人们才意识到该纯力学定律对于行星动力学的更广泛的意义。当该法则与
克里斯蒂安·惠更斯(Christiaan Huygens)刚发现的
离心力定律结合时,使
艾萨克·牛顿(Isaac Newton)、
爱德蒙·哈雷(
Edmund Halley)、甚至
克里斯多佛·雷恩(
Christopher Wren)和
罗伯特·胡克(Robert Hooke)独立的论证太阳与其行星之间假定的
万有引力随着它们之间的距离的平方的减少而减少。这就否定了学术物理学传统的假设——不论在什么时间,万有引力不随两个天体之间的距离改变而改变,正如开普勒所做的假设以及伽利略错误的普遍规律,即自由落体运动加速度是一样的,以及如伽利略的学生Borrelli在其1666年的
天体力学中所描述的一样。
威廉·吉尔伯特(William Gilbert)在用磁铁做实验之后,确定地球的中心是一块巨大的磁铁。他的理论引导开普勒认为太阳的
磁力驱动行星在它们自己的轨道运动。这是对行星运动的一个有趣的解释,但是对开普勒来说,很不幸,这种解释是错的。在找到正确的答案之前,科学家们需要对运动有更多的了解。
《鲁道夫星表》
1623年,开普勒最终完成了《鲁道夫星表》(Tabulae Rudolphinae),这在当时被认为是他主要的工作。然而,由于皇帝的出版要求以及与第谷后人之间的协商,该星表直到1627年才开始印刷。同时,
三十年战争的根源宗教紧张,再一次使开普勒及他的家人陷入危险的境地。1625年,天主教反
改革派的代理人将开普勒大部分的藏书查封。1626年,
林茨城被包围。开普勒搬到乌尔姆,在那里他自费印刷了该星表。
著作列表
《宇宙的奥秘》(Mysterium cosmographicum,1596年)
《关于占星术更坚实的基础》(De Fundamentis Astrologiae Certioribus,1601年)
《天文学的光学部分》(Astronomiae Pars Optica,1604年)
《蛇夫座脚部的新星》(De Stella Nova in Pede Serpentarii,1606年)
《新天文学》(Astronomia nova,1609年)
《第三方调解》(Tertius Interveniens,1610年)
《与星夜信使的对话》(Dissertatio cum Nuncio Sidereo,1610年)
《折射光学》(Dioptrice,1611年)
《六角的雪花》(De Nive Sexangula,1611年)
《这些年里,圣母玛利亚与永恒的耶稣基督展现了人类出生前的本性》(De vero Anno, quo aeternus Dei Filius humanam naturam in Utero benedictae Virginis Mariae assumpsit,1614)
《编年 纪选集》(Eclogae Chronicae,1615年和《与星夜信使的对话》一起发表)
《求酒桶体积之新法》(Nova stereometria doliorum vinariorum,1615年)
《哥白尼天文学概要》(Epitome astronomiae Copernicanae,1618-1621年分三部分发表)
《世界的和谐》(Harmonices Mundi,1618年)
《宇宙的奥秘》(第二版,Mysterium cosmographicum,1621年)
《鲁道夫星表》(Tabulae Rudolphinae,1627年)
《梦》(Somnium,1634年)
学术成就
天文学贡献
开普勒定律并没有立即得到认可。几个重要人物如伽利略和
勒内·笛卡尔(René Descartes)完全忽视了开普勒的《新天文学》。许多天文学家包括开普勒的老师迈克尔·
马斯特林,反对开普勒将物理学引入天文学。一些人采取了折中立场。关于椭圆的
虚焦点,伊斯梅尔·布略(
Ismael Boulliau)认可椭圆轨道,但是用均匀运动代替开普勒的面积定律,而塞斯·沃德(Seth Ward)则使用等径运动的椭圆轨道。
几位天文学者对开普勒的理论进行了试验,对他的各种修改违背了
天文观测的结果。在这两颗行星没法正常观测到的情况下,金星与
水星的两次
凌日为开普勒的理论做了灵敏的试验。1631年的水星凌日,开普勒极其不确定水星的参数,建议
观测者在预测日期的前一天与后一天寻找
凌日现象。
皮埃尔·伽桑狄在预测的日期观察到了
凌日现象,证实了开普勒的预测。这是首次观测到
水星凌日。然而,他试图在一个月以后观测
金星凌日,却因为《鲁道夫星表》的误差而失败。伽桑狄并未意识到那次的凌日现象并非在欧洲的大部分地方都可以观测得到,包括
巴黎。
杰雷米亚·霍罗克斯在1639年观测到了金星凌日。在这之前,他用自己的观测结果修改了开普勒模型的参数,并预测了这次凌日现象,然后制作了观测工具。他一直是开普勒模型的坚定支持者。
全欧洲的天文学者们都阅读了《哥白尼天文学概要》。开普勒死后,该书成为传播其思想的主要工具。1630-1650年间,该书成为使用最多的天文学教科书,使许多人改信椭圆为基础的天文学。然而,很少人接受他建立于物理基础上的天体运动的观点。在17世纪后期,许多从开普勒的著作产生出来的
天体物理学理论——尤其是乔瓦尼·阿方索·博雷利和
罗伯特·胡克的理论——开始包含引力(虽然不是开普勒假定的准精神运动类)和笛卡尔惯性概念。而牛顿的《数学原理》则是这些理论的顶峰,在该著作中,牛顿从以力为基础的
万有引力定律得出了
开普勒行星运动定律。
数学和物理学研究
作为那年新年的礼物,开普勒为他的朋友也是多年的赞助人——瓦克·瓦克亨菲尔斯男爵,写了一本简短的小册子,题为《六角雪花》(De nive sexangula)。文中,开普勒发表了他首次对雪花六角
对称性的描述,并将该问题扩展成为对称性的一个假设性
原子论物理基础,并造就了后来人们所知道的开普勒猜想,最有效的球体填充方法说明。开普勒是将无限小应用到数学的先驱。
历史和文化遗产
开普勒在哲学和
科学编史学方面的作用超出了其在天文学与
自然哲学的历史发展中的作用。开普勒及其天体运动定律对早期的
天文学史非常重要,比如
蒙蒂克拉(Jean-Étienne Montucla)1758年的《数学历史》以及
德朗布尔(Jean-Baptiste Delambre)1821年的《现代天文学历史》。这些和其它从
启蒙运动的视角编写的历史以怀疑和反对的态度看待开普勒的
形而上学和宗教主张,但是到了后来的浪漫时期,自然哲学家们将这些元素视为他成功的关键。威廉姆·维赫维尔在他有着重要影响力的作品《
归纳法科学的历史》(1837年)中,发现开普勒是归纳法科学天才的原型;在他的作品《哲学与归纳科学》(1840年)中,维赫维尔将开普勒称为
科学方法最高级形式的体现。类似地,在凯瑟琳皇后购买了开普勒手稿之后第一个对其进行广泛研究的人恩斯特·弗里德里希·阿贝尔特(Ernst Friedrich Apelt)认定开普勒是“
科学革命”的钥匙。阿贝尔特看过开普勒的关于数学、美感、物理学以及作为整个
思想体系一部分的神学的观点,对开普勒的生活与工作首次进行了广泛的研究。19世纪末20世纪初,开普勒书籍出现了大量的现代翻译版本,而他的全集的系统出版则在1937年才开始(21世纪初才接近完成),麦克斯·凯斯帕(M. Caspar)撰写的开普勒自传于1948年出版。然而,继阿贝尔特之后,亚历山大·
柯瓦雷(Alexandre Koyré)所写的关于开普勒的作品是对开普勒
宇宙学及其影响进行
历史解释的里程碑。20世纪30-40年代,科瓦雷以及第一代专业
科学史学工作者中的其他许多人将“科学革命”描述为科学历史的核心事件,而开普勒是这场革命的核心人物(之一)。科瓦雷将开普勒的
理论工作而不是实验工作置于从古代到现代世界观的知识转变过程的中心位置。自从20世纪60年代以后,对于开普勒的历史学术研究得到很大发展,涉及他的
占星学与
气象学、几何方法、他的
宗教观在他工作中的作用、他的文学及
修辞手法、他与同时期更广阔的文化与哲学思潮的互动,甚至是他作为一名科学
历史学家的作用。
对于开普勒在“科学革命”中的地位的争论也产生了一系列哲学和大众的作品。其中亚瑟·凯斯特勒所作的《梦游者》(1959年)是最具影响力的作品之一。在该作品中,开普勒无疑是这场革命的英雄(不管是道德上、神学上或认知上)。
科学哲学家,如查尔斯·桑德斯·皮尔斯、诺伍德·拉塞尔·汉森(Norwood R. Hanson)、史蒂芬·图尔明(S. Toulmin)与卡尔·波珀都反复的求助于开普勒,
不可比性实例、
类比推理、证伪性与许多其它的哲学概念都在开普勒的作品中出现过。物理学家
沃尔夫冈·泡利(Wolfgang E.Pauli)甚至使用开普勒与罗伯特·弗勒德的先后之争来探究
分析心理学对
科学研究的意义。1981年,约翰·博纳维尔(John Banville,)发表了非常受欢迎的甚至是玄幻的历史小说《开普勒》,对凯斯特勒(Koestler)的叙事性非小说与科学哲学中的许多主题进行了探究。更为玄幻的是2004年的一部非小说类作品《天国的密谋》,该书声称开普勒谋杀了第谷以获取他的数据。
后世纪念
开普勒获得了作为科学
现代性的象征与超出时代的人物的大众形象,美国天文学家
卡尔·萨根(Carl Edward Sagan)称他为“第一个天体
物理学家与最后一个科学占星家”。除了著名的
开普勒行星运动定律,天文学、
地理学还有很多以开普勒命名的地标。1651年,乔万尼·巴蒂斯塔·
利奇奥里(Giovanni Battista Riccioli)将一座月球
环形山(北纬8.1°西经38.0°)命名为
开普勒环形山。德国天文学家
马克斯·沃夫(Max Wolf)于1929年9月25日发现的
小行星1134被命名为开普勒小行星。1973年,
NASA又将一座直径228千米的火星环形山(
南纬46.8°东经140.9°)以开普勒命名。在
新西兰的
峡湾国家森林公园,也有一座群山以开普勒命名,称为“开普勒山”,以及一条穿过该群山的被称为“开普勒小道”的“三日步行道”。
2009年,美国国家
航空航天局因开普勒对天文学领域的贡献,将以
凌星法搜寻系外行星的
太空望远镜命名为
开普勒太空望远镜(Kepler space telescope),整个观测任务被称为
开普勒任务(Kepler Mission)。截至2018年10月31日的数据,开普勒太空望远镜在9年半的运行期间,共观测了
天鹅座、
天琴座、
天龙座内530506颗恒星的
光变曲线,发现了2662颗
太阳系外行星,这些系外行星都以开普勒(Kepler)命名编号,例如
开普勒186f(Kepler-186 f)、
开普勒22b(
Kepler-22 b)等等。2011年,
欧洲空间局发射了代号为ATV-002的约翰内斯·开普勒号
自动运载飞船(Johannes Kepler Automated Transfer Vehicle),为
国际空间站提供
推进剂、空气和干货物,主要对接
星辰号服务舱。
德国作曲家
保罗·欣德米特写了一部关于开普勒的
歌剧——《世界的和谐》,以及一首源于该
歌剧音乐的同名
交响乐。在
奥地利,开普勒留下的历史遗产使他成为一枚银质收藏币的图案之一:2002年9月10日的10欧元约翰内斯·开普勒银质硬币。该硬币的反面是开普勒的画像,他曾经在
格拉茨及附近地区教学。开普勒私下与汉斯·乌尔里奇·艾根伯格亲王(Hans Ulrich von Eggenberg)熟识,他很可能对艾根伯格城堡的建造产生了影响(这枚硬币正面的图案)。硬币上,在他的前面镶嵌了一个《宇宙的奥秘》中的球体与
多面体模型。为了纪念开普勒,1975年
奥地利上奥地利州首府
林茨市开设的大学被命名为约翰内斯·开普勒林茨大学(Johannes Kepler Universität Linz),简称
林茨大学,该校设有开普勒学院。
英伟达(Nvidia)公司在2012年推出了开普勒
微架构图形处理器,是费米架构的继承者。2013年,著名的
集成开发环境(IDE)软件Eclipse的4.3版本代号为Kepler。一种以Lua语言编写的可拓展
网站开发架构被命名为Kepler。此外,美国圣公会礼仪历的5月23日是纪念开普勒与哥白尼的节日。