开关二极管
半导体二极管的一种
开关二极管,是半导体二极管的一种,是为在电路二极管
工作原理
半导体二极管导通时相当于开关闭合(电路接通),截止时相当于开关打开(电路切断),所以二极管可作开关用,常用型号为1N4148。由于半导体二极管具有单向导电的特性,在正偏压下PN结导通,在导通状态下的电阻很小,约为几十至几百欧;在反向偏压下,则呈截止状态,其电阻很大,一般硅二极管在10ΜΩ以上,锗管也有几十千欧至几百千欧。利用这一特性,二极管将在电路中起到控制电流接通或关断的作用,成为一个理想的电子开关。
以上的描述,其实适用于任何一支普通的二极管,或者说是二极管本身的原理。但针对于开关二极管,最重要的特点是高频条件下的表现。
高频条件下,二极管的势垒电容表现出来极低的阻抗,并且与二极管并联。当这个势垒电容本身容值达到一定程度时,就会严重影响二极管的开关性能。极端条件下会把二极管短路,高频电流不再通过二极管,而是直接绕路势垒电容通过,二极管就失效了。而开关二极管的势垒电容一般极小,这就相当于堵住了势垒电容这条路,达到了在高频条件下还可以保持好的单向导电性的效果。
工作特性
开关二极管从截止(高阻状态)到导通(低阻状态)的时间叫开通时间;从导通到截止的时间叫反向恢复时间;两个时间之和称为开关时间。一般反向恢复时间大于开通时间,故在开关二极管的使用参数上只给出反向恢复时间。开关二极管的开关速度是相当快的,像硅开关二极管的反向恢复时间只有几纳秒,即使是锗开关二极管,也不过几百纳秒。
开关二极管具有开关速度快、体积小、寿命长、可靠性高等特点,广泛应用于电子设备的开关电路、检波电路、高频和脉冲整流电路及自动控制电路中。
种类
开关二极管分为普通开关二极管、高速开关二极管、超高速开关二极管、低功耗开关二极管、高反压开关二极管、硅电压开关二极管等多种。
普通开关二极管
常用的国产普通开关二极管有2AK系列锗开关二极管,表4-8为2AK系开关二极管的主要参数。
高速开关二极管
高速开关二极管较普通开关二极管的反向恢复时间更短,开、关频率更快。
常用的国产高速开关二极管有2CK系列。
进口高速开关二极管有1N系列、1S系列、1SS系列(有引线塑封)和RLS系列(表面安装)。
超高速开关二极管
常用的超高速开关二极管有1SS系列(有引线塑封)和RLS系列(表面封装)。
低功耗开关二极管
低功耗开关二极管的功耗较低,但其零偏压电容和反向恢复时间值均较高速开关二极管低。
常用的低功耗开关二极管有RLS系列(表面封装)和1SS系列(有引线塑封)。
高反压开关二极管
高反压开关二极管反向击穿电压均在220V以上,但其零偏压电容和反向恢复时间值相对较大。
常用的高反压开关二极管有RLS系列(表面封装)和1SS系列(有引线塑封) 。
硅电压开关二极管
硅电压开关二极管是一种新型半导体器件,有单向电压开关二极管和双向电压开关二极管之分,主要应用于触发器、过压保护电路、脉冲发生器及高压输出、延时、电子开关等电路。
单向电压开关二极管也称转折二极管,邮PnPN四层结构的硅半导体材料组成,其正向为负阻开关特性(指当外加电压升高到正向转折电压值时,开关二极管由截止状态变为导通状态,即由高阻转为低阻),反向为稳定特性。双向电压二极管由NPnPN五层结构的硅半导体材料组成,其正向和反向均具有相同的负阻开关特性
二极管
二极管,(英语:Diode),电子元件当中,一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。而变容二极管(Varicap Diode)则用来当作电子式的可调电容器。大部分二极管所具备的电流方向性我们通常称之为“整流(Rectifying)”功能。二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。因此,二极管可以想成电子版的逆止阀。
早期的真空电子二极管;它是一种能够单向传导电流的电子器件。在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。
真空管(英国称为“热游离阀(Thermionic Valves)”)。现今最普遍的二极管大多是使用半导体材料如
三极管
三极管,全称应为半导体三极管,也称双极型晶体管晶体三极管,是一种控制电流的半导体器件其作用是把微弱信号放大成幅度值较大的电信号, 也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
1947年12月23日,美国新泽西州墨累山的贝尔实验室里,3位科学家——巴丁博士、布莱顿博士和肖克莱博士在紧张而又有条不紊地做着实验。他们在导体电路中正在进行用半导体晶体把声音信号放大的实验。3位科学家惊奇地发现,在他们发明的器件中通过的一部分微量电流,竟然可以控制另一部分流过的大得多的电流,因而产生了放大效应。这个器件,就是在科技史上具有划时代意义的成果——晶体管。因它是在圣诞节前夕发明的,而且对人们未来的生活发生如此巨大的影响,所以被称为“献给世界的圣诞节礼物”。这3位科学家因此共同荣获了1956年诺贝尔物理学奖
晶体管促进并带来了“固态革命”,进而推动了全球范围内的半导体电子工业。作为主要部件,它及时、普遍地首先在通讯工具方面得到应用,并产生了巨大的经济效益。由于晶体管彻底改变了电子线路的结构,集成电路以及大规模集成电路应运而生,这样制造像高速电子计算机之类的高精密装置就变成了现实。
参考资料
最新修订时间:2022-08-25 15:53
目录
概述
工作原理
参考资料