尖峰电流是指单台或多台用电设备持续1-2s的短时最大负荷电流,尖峰电流一般出现在电动机起动过程中。尖峰电流主要用来计算电压波动、选择熔断器和低压断路器、整定
继电保护装置及检验电动机自起动条件等。
尖峰电流产生原因
在实际电路连线中,由于工艺的关系,电路的输入回路至开关管V的集电极和发射极之间的导线上存在一定的杂散电感,等效于LS。在V导通时,输入电流iI经过LS,产生一个感应电流ULS,极性为左正右负。V关断期间,电流将迅速减小至零,导致产生很大的di/dt,LS上产生很高的ULS,极性变为左负右正,加在V的集电极和发射极上,致使V管两端产生很高的电流尖峰。由于LS的存在,在输入电流一定的情况下,开关管V的关断速度越快,或者开关管的关断速度一定的情况下,输入电流越大,电流尖峰越大。
显然LS限制了电源功率等级和开关频率的进一步提高。由此产生的电流尖峰对开关管V危害很大,它会使V的关断损耗增加,整机效率降低,加大传导噪声(EMI),甚至损坏开关管,因此必须消除。
尖峰电流抑制措施
为了减小LS,对连接线进行“短”“粗”“直”方式的处理,但由于空间和总体布局的限制,光靠接线是不能消除电流尖峰的影响,所以采取以下措施。
在直流母线侧并联吸收电容
在输入端靠近开关管的直流母线上并联一个电容CZ,对抑制开关管两端电流尖峰有一定的效果。开关管关断时输入回路的等效电路假定开关管V关断时刻,输入电流(电感LS的电流)为II,电容CZ上的初始电流为Ui。
在杂散电感LS存在的情况下,如果不采取任何措施,例如不加缓冲电容CZ(相当于CZ→0),则uZmax→∞(理想情况),容易产生很大的电流尖峰,这与上面的分析是一致的。在其它条件一定的情况下,输入电流II越大,uZmax越大,即电流尖峰问题容易在大功率、大电流电路中出现,这与经验常识也是一致的。当并入一个电容CZ以后,情况得到了改善,CZ越大,LSCZII越小,对电流尖峰的抑制效果越明显。考虑到成本问题,CZ也不是越大越好。LS的精确数值通常是不知道的,CZ的取值通常要通过实验来选取。在选择电容CZ时,要选择高频特性好的无感电容。
开关管两端加缓冲电路
在开关管两端加缓冲电路(由VD1、R1、C1构成),对于吸收开关管两端的电流尖峰也有比较好的效果。缓冲电路的原理所由于工艺的关系,主电路的直流输入端和开关管的集电极之间存在杂散电感LS1,发射极和主
续流二极管之间有杂散电感LS2。当开关管关断瞬间,输入电流通过LS1、VD1、C1、LS2和Ui构成续流回路。开关管关断瞬间,输入电流为II,缓冲电容C1的电流为0。在大功率
BUCK电路中如果布线不当,杂散电感LS1、LS2比较大且不采取缓冲措施(相当于C1→0)的话,开关管两端要承受很高的电流尖峰(uTmax→∞)。反之,缓冲电容C1取值越大,uTmax越小,越有助于电流尖峰的吸收。当开关管开通时,C1、R1和开关管V构成放电回路,缓冲电容C1中存储的电流尖峰的能量在R1中消耗掉。设流过开关管V的缓冲电容最大放电电流为ITmax,放电时间为τ,电阻R1消耗的功率为P,开关管V的开关频率为f。忽略V的开通压降,显然有:
从开关管的安全工作来考虑,希望ITmax越小越好,R1值要取大一些。但R1过大会造成放电时间τ过长,不利于开关管工作。同样,C1也不能取值过大,否则τ太长,并且R1的功耗太大,影响效率。可见缓冲电路中R1、C1的取值既不是越大越好,也不是越小越好,需要根据电路的实际情况仔细选择。注意R1、C1要选择高频特性好的无感电阻和无感电容,VD1选择
快恢复二极管。