锁相环作为时钟发生器在现阶段 S O C 芯片中的应用越来越广泛, 高精度、 低功耗的锁相环得到了更大的发展。 然而, 由于传统整数型锁相环电路本身的特点, 它的输出频率的解析度较低, 无法满足一些需要高解析度输出频率的系统要求。 在这个情况下, 小数分频的锁相环由于输出频率解析度很高而得到了广泛的应用。
频率合成器作为航天测控及通信系统的核心部件,是保证测控精度和系统整体战技性能的关键组成部分。锁相环频率合成器具有频率稳定度高 、相位噪声低 、易于集成等突出优点,因而是通信 、雷达 、武器制导等系统中的重要部件 。随着电子与通信技术尤其是无线通信领域的飞速发展, Analog 、National 、H ittite 等众多厂商纷纷推出单片微波锁相频率合成器件, 增强了锁相环振荡器的功能, 提高了锁相环路的性能 ,使得微波频率合成技术得以提高 ,朝着小型化、高性能 、低成本的方向不断向前发展 。
频率合成技术是无线电技术中的一个重要领域 ,它在无线电技术、无线电通信等各个方面都得到了广泛的应用。特别是利用数字频率合成技术 ,能提供一个高精度、高分辨率、便于数字程控的信号源。数字式频率合成技术的频率合成方案 ,可分为 2大类: ① 无锁相环路的直接频率合成和查表式频率合成。② 利用锁相环的间接式频率合成。而近年来人们提出的小数分频锁相技术 ,为锁相频率合成开拓了一个崭新的前景。
在 S 频段统一测控系统中 , 微波频率合成器应用在射频前端上下行信道以及系统标校设备上 , 其主要特点是: 工作频率高 ,频带宽, 频率步进小 ,输出相位噪声低。本文结合测控系统的设备特点 ,主要研究探索基于单片集成环路的 S 频段频率合成技术 。由于传统单一锁相环路频率合成方法很难同时兼顾低相位噪声和小频率步进, 因此采用小数分频锁相环频率合成方案。
LMX2541 系列芯片是高性能小数分频锁相频率合成器芯片, 与其他锁相环芯片相比,最大的特点在于其芯片内部不仅集成了VCO ,内置了二阶 RC 低通滤波器, 而且 R 、C 值可以编程控制; 采用 ∑-Δ调制的杂波抑制技术 , 提高了输出信号噪声特性 ; 外部 M CU 可以通过 Microwire 总线实现对 LM X2541 编程控制 ; 该系列芯片有 6 款产品 ,输出信号覆盖 1 990 ~ 4 000 M Hz 频率范围 。
锁相式频率合成技术中的普通倍频环, 当数字分频器的分频比为整数 N 时, 利用对高稳定的输入参考频率 f r 的相位锁定效应, 倍频环的输出频率 f o =N fr 。改变分频比 N , 就能在宽频率范围内获得高稳定和高频谱纯度的离散输出频率。如何提高锁相式频率合成器的频率分辨率, 一直是这类合成器发展过程中研究的主要课题之一。欲提高合成频率的分辨力, 只有降低参考领率 f r 。然而,在上述单环频率合成器中 , 这将受到环路滤波器带宽和动态性能的限制 , 通常参考频率不宜小于 10kH z 。利用多环合成单元, 可以提高频率的分辨力 , 但为了进一步提高频率的分辨力 , 必须把多个合成单元级联起来 , 显然, 这种传统方法是十分复杂的, 实际上不可能实现的。近几年发展起来的微机控制的小数分频锁相环, 使频率分辨率的提高成为可能 , 所以在现代高性能信号发生器中日益获得广泛应用 。
锁相环频率合成原理
锁相环路是一个相位误差控制系统 ,通过比较输入信号与压控振荡器输出信号之间的相位差 , 产生一个对应于 2 个信号相位差的误差电压 , 该误差电压经处理后去调整压控振荡器的频率或相位 。当环路锁定时 ,误差控制电压为一固定值 ,压控振荡器输出频率与输入信号频率相等 。锁相环路的这一特点 ,使得它在频率合成领域得到广泛应用 ,用来实现对信号频率的精确控制 。
频率合成技术是现代通信系统的重要组成部分 ,它是将一个高稳定度和高准确度的基准频率经过四则运算产生同样稳定度和准确度的任意频率 。直接数字频率合成( DDS) 在基带信号处理系统中应用广泛 ,具有频率分辨率高 、频率准确度好的显著优点 ,但是它的最大缺点是输出频率不能太高 , 由数字技术带来的相位量化噪声和 D/A 变换器带来的幅度量化噪声可能导致很高的总输出噪声电平 。因此 ,对于宽频带射频振荡器来说 ,锁相环频率合成技术仍是主流 。
锁相环作为频率合成的主要部件 , 由鉴相器( PD )、环路滤波器( LPF)、压控振荡器( VCO )和可编程序 N 分频器组成 。根据分频器 1/ N 取值方式的不同 , 频率合成锁相环路主要有 2 种形式 : 整数分频锁相环和小数分频锁相环 。当 N 取整数时 , 为整数分频锁相环 ; 当N 取小数时 ,为小数分频锁相环 。
1 整数分频锁相环
整数分频锁相环外接一个固定频率信号 f OS C ,经过 1/R 分频后得到鉴相频率f PD , 压控振荡器 f VCO 经过 1/ N 分频后与 f PD 鉴相 。在这个环路中 , 设频率分辨率为 f CH 。环路锁定后 ,f VCO与 f OSC之间关系如下fVCO =fOSC ×NR考虑到输出信号的相位噪声特性 , 希望尽可能提高鉴相器频率 f PD 而使 N 值最小 。因为 N 为整数 ,所以鉴相器频率 f PD 最大可以选择为频率分辨率 f CH 。鉴相器频率 f PD 的计算公式如下f PD =GCD( f OC , f CH)式中 GCD( x , y) 表示 x 和 y 的最大公约数 。
2 小数分频锁相环
小数分频锁相环工作方式下 , N 设定为小数 ,可以用下式表示N = N INT +FnumFden式中 N INT表示 N 值的整数部分 , Fnum表示分子 ,Fden表示分母 。于是 , 小数分频锁相环的鉴相频率计算公式为f PD = GCD( f OSC , f CH ×Fden)比较整数和小数分频锁相环之间工作方式的不同 ,不难看出 ,整数分频锁相方式下 , 无法在单个环路实现高频率 、小步进的频率合成 ,需要通过多个环路才能实现 。而在小数分频锁相方式下则可以解决这一问题 。
S频段频率合成器实现
S 频段频率合成器要求直接输出微波信号 , 同时具备宽频带 、小步进和低相噪的特点 。要实现这一目标 , 可供选择的方案有很多种 , 比如 DDS +PLL +正交调制 、单一锁相环 、多级锁相环等频率合成方法 ,考虑到成本等因素 ,选择单片集成锁相环方案 。从上述分析可以看出 ,单一整数锁相环无法实现微波频率下小步进的频率合成 , 故选择基于小数分频单片集成锁相环合成方案 , 最终采用锁相环频率合成器件 LM X2541LQ2380E 。
1 LMX2541 器件介绍
LMX2541 是一款超低噪声锁相频率合成器 ,它内部集成了高性能 ∑-Δ小数锁相环和压控振荡器 。与其他通用频率合成芯片相比 , 它具有以下几个特点 : ①外围电路简单 , 电路体积非常小 ,功耗极低 ,它将前置分频器 、环路滤波器 、VCO 和电荷泵都集成在芯片内 ,只需增加少量外围元件即可完成频率合成功能 ,电路结构得以简化 , 在3 . 3 V 电压供电时 ,全芯片工作峰值电流仅为 204 m A ; ②由于该芯片已将锁相环 、环路滤波器和 VCO 全部集成在一起 ,因此电路的实现难度大大降低 ,只需对寄存器写入正确的数据即可, 电路易于调试 ; ③LM X2541 具有较宽的频率覆盖范围 1 990 ~ 4 000 M H z ,它分为很多频段 , 每个频段对应一种型号的 LMX2541 ;④LMX2541 提供了灵活的编程空间 , 在 LM X2541中已经内置了二阶 RC 低通滤波器 , 可以满足一般要求 ,用户可以根据需要定义更高阶数的 RC 低通滤波 器的 参 数来 获得 更 高质 量的 信 号 ; ⑤在LM X2541 中还定义了抖动控制的寄存器 , 可以选择强抖动 、弱抖动和不抖动 3 种工作模式 ,可以有效地改善信号的相位噪声特性并抑制杂散。
2 频率合成器硬件结构
频率合成器硬件结构包括 : 锁相环模块 、微控制器 、低噪声电源等主要部分组成 。锁相环模块由LM X2541和环路滤波器组成。
锁相环模块是频率合成的核心部分 ,内部配置了 100 M H z 的压控晶体振荡器 VCXO ,也可以从外部输入更精准的参考源信号 。微控制器实现人机接口 , 接收外部输入的信号频率 、幅度等参数 , 针对LM X2541 器件进行频率合成优化计算 , 产生频率 、幅度控制字 , 并将控制字通过 M icrowire 总线写入LM X2541 内部寄存器 。低噪声电源产生 LM X2541所需的 +3 . 3 V 直流电压 。
3 环路滤波器参数设计
采用 Natio n ClockDesign Too l( NCDT )时钟设计工具软件对频率合成器进行设计优化 , 由于选用的 LM X2541 是全锁相环器件 ,因此优化设计主要工作是环路滤波器的参数选取 。
S 频段频率合成器输出频率范围设定为 2 200 ~2 300 MH z , 频率分辨率为 10 kH z ,通过 NCDT 软件优化分析 ,采用 4 阶 RC 滤波器作为环路低通滤波器。
4 环路杂散抑制技术
小数 N 分频锁相环杂散主要由分频控制电路产生 ,分频控制电路形成有规律的控制信号 ,同时也就产生了有规律的杂散 ,小数 N 分频锁相环第一杂散位置出现在 f PD /Fden 。由于小数分频锁相环杂散形成的规律性 ,因此可以通过打破这一规律来抑制杂散的形成 。 LM X2541 内部通过 ∑-Δ 调制技术和分频控制抖动相结合来抑制小数分频所产生的杂散 。
1) 传统小数分频控制范围为 N IN T ~ N INT +1 ,有 2 个分频控制字 ,等效于一阶 ∑-Δ 调制 ; 二阶 ∑-Δ调制控制范围为 N IN T -1 ~ N IN T +2 , 有 4 个分频控制字 ; 三阶 ∑-Δ 调制控制范围为 N INT -3 ~N IN T +4 , 有 8 个分频控制字 ; 四阶 ∑-Δ 调制控制范围为 N IN T -7 ~ N IN T +8 , 有 16 个控制字 。 ∑-Δ调制技术相当于将杂散频带展宽 。
2) 分频控制抖动技术是改变传统分频的控制规律 ,将分频控制字作随机化处理 ,这一处理相当于将原先集中的杂散频率附近的功率平均分布到展宽后的频率范围内 ,因而可以明显降低杂散电平 。微控制器对 LM X2541 寄存器编程设置 ∑-Δ调制的阶数和抖动控制 , 可以实现对输出信号的杂散抑制 。
5 频率合成器相位噪声测试
微控制器根据输出频率 、幅度 、滤波器和环路控制等其他参数,计算得出 LM X2541 寄存器控制字,通过 I/O 口模拟 Microw ire 总线读写时序将控制字写入 LMX2541 内部寄存器 ,用 H P8563E 频谱分析仪测试频率合成器输出信号。频 率合 成 器的 相 位测 试结 果 表明 , 基 于LM X2541 的 S 频段频率合成器输出信号表现出良好的相位噪声特性 。
S频段频率合成器应用
S 频段频率合成器制作完成后 ,作为 USB 统一测控系统的信标设备 , 应用于该测控系统的有线和无线射频闭环检查 。通过微控制器的串口将频率合成器输出信号设置成所需的频率和幅度 , 经过衰减器后送入高频接收机 , 通过观察综合基带主接收机和跟踪基带的跟踪接收机和引导接收机的 AGC 电压 ,可以判断测控系统整个下行链路设备工作状态 。
该频率合成器还可以延伸应用于其他需要提供S 频段参考频率信号的场合 ,比如可以用作变频器的本振频率源 ,可以为 A/D 变换提供高速采样时钟频率等 。
与整数分频锁相环相比 , 小数分频锁相环采用小数作为环路分频计数器 ,可以提高锁相环鉴相频率 ,使环路分频计数器 N 值降低 ,从而有效地降低输出信号的相位噪声 , 使噪声远离载波中心频率 。基于 ∑-Δ调制和噪声成形技术可以极大地抑制由小数分频带来的杂散 , 从而提高信号质量 。实验数据表 明 , 基 于小 数 分频 锁相 频 率合 成 技术 和LM X2541LQ2380E 器件实现的 S 频段频率合成器提供了良好的信号输出特性 ,该频率合成器外观小巧 、成本低廉 、设计方案简单,可以为 USB 测控系统提供低成本频率合成器解决方案 。