富勒烯化学
专门讨论富勒烯特性的有机化学领域
富勒烯化学 是一专门讨论富勒烯特性的有机化学领域。在这一领域的研究,是因为对富勒烯衍生物和调整其特性的需要。例如,富勒烯难溶于水而增加一个合适的官能团能够增强其溶解性。 通过增加一个能够发生聚合反应的官能团,可以获得富勒烯聚合物。富勒烯衍生物分为两类: 外取代富勒烯即在碳笼外有取代基团和富勒烯包合物即在碳笼内束缚一些分子或原子等。
简介
自然界中碳的单质通常以两种形式存在,即金刚石石墨。1985年,继金刚石、石墨之后,美国休斯顿(Rice)大学Kroto、Smally、Curl等在合成星际间化合物的过程中,用大功率激光轰击石墨进行碳的团簇研究时,发现了碳的第3种同素异形体-由60个碳原子组成的原子簇C60。随后,人们又发现了C60簇分子C28、C34、C70、C84、C90、C120……等,学术界将这种笼状碳原子簇统称为富勒烯(fullerene)。富勒烯家族的发现是世界科技史上的一个重要里程碑,3位发现者也因此获得1996年诺贝尔化学奖。1990年Krabtschmer及Huffman等发现了制备富含C60和C70等富勒烯烟灰的方法,使宏量制备富勒烯成为可能。此后,富勒烯的系统研究在物理、化学、材料、生物化学、医学、生命科学等领域蓬勃发展。
结构
C60是由60个碳原子组成的具有美学对称性的足球状分子,分子直径为0.71nm。在这种球面结构中,60个碳原子采用sp2.28杂化方式,即 介于平面三角形的sp2和正四面体的sp3杂化之间的一种轨道杂化方式,60个碳原子的未杂化p轨道则形成一个非平面的共轭离域大π体系,只不过这种p轨 道中含有10%的s成分。C60的球面是由12个正五边形和20个正六边形稠合构成的笼状32面体,五边形环为单键,键长约为0.145nm,两个六边形 环的公共边则为双键,键长为0.138nm,共有30个双键;每个五边形与6个六边形共边,而六边形则将5个五边形彼此隔开。
物理性质
C60为黑色粉末状固体,密度(1.65±0.05)g/cm3,熔点>700℃,微溶于二硫化碳、甲苯、环己烷、氯仿等溶剂中,一般的溶剂如水、乙醇则不溶,但其衍生物则显示出较大的溶解度范围,如氟的衍生物较C60母体溶解性好得多,而溴的衍生物溶解性则不行;C60在脂肪烃中的溶解度随溶剂碳原子数的增加而增大。C60能在不裂解的情况下升华,其生成热ΔHf0(C)=2280 KJ/mol,电离势为2.61eV,电子亲合势为2.6~2.8eV。C60的可压缩率为7.0×10-12cm3/dyn,具有非线性光学特性,为分子晶体。能谱计算表明,为面心立方体结构。
化学性质
富勒烯独特的分子结构决定了其具有独特的物理化学性质,富勒烯的60个P轨道构成的大π键共轭体系使得它兼具有给电子和受电子的能力。C60是特别 稳定的芳香族分子,含有12500个共振结构式,每个碳原子以sp2.28轨道杂化,类似于C-C单键和C=C双键交替相接,整个碳笼表现出缺电子性,可 以在笼内、笼外引入其它原子或基团。它和其它芳香烃不同,分子中不含氢原子和其它基团,所有的C-C键都固定在球壳上,不能发生取代反应,但是其衍生物则可以。C60在一定条件下,能发生一系列化学反应,如亲核加成反应、自由基加成反应、光敏化反应、氧化反应氢化反应卤化反应聚合反应以及环加成反应等,其中环加成反应是富勒烯化学修饰的重要途径, 迄今为止有关这一反应的报道在所有富勒烯化学修饰反应中是最多的, 通过它可以合成多种类型的富勒烯衍生物。
C60分子具有芳香性,溶于苯呈酱红色。可用电阻加热石墨棒或电弧法使石墨蒸发等方法制得。C60有润滑性,可能成为超级润滑剂。金属掺杂的C60有超导性, 是有发展前途的超导材料。C60还可能在半导体、催化剂、蓄电池材料和药物等许多领域得到应用。C60分子可以和金属结合,也可以和非金属负离子结合。当 碱金属原子和C60结合时,电子从金属原子转到C60分子上,可形成具有超导性能的MxC60,其中M为K,Rb,Cs;x为掺进碱金属原子的数目。 K3C60在18K以下是超导体,在18K以上是导体,掺进原子数可达6个,K6C60是绝缘体。C60是既有科学价值又有应用前景的化合物,在生命科 学、医学、天体物理等领域也有定的意义。富勒烯的成员还有C78、C82、C84、C90、C96等也有管状等其他形状。
制备方法
目前制备C60的方法主要有两大类:石墨蒸发法和火焰(加热)法。其中石墨蒸发法因加热方式不同又有:激光法、电阻加热法、电弧法、高频诱导加热法、太阳能聚焦加热法等。火焰(加热)法有:CVD催化热裂解法、苯火焰燃烧法、萘热裂解法和低压烃类气体燃烧法等。
应用
富勒烯C60以其独特的结构和理化性质,决定了它及其衍生物潜在的应用前景。富勒烯及其衍生物有望在生物医药领域得到广泛应用, 并且取得了可喜的成果 ,其中对生物特性,如细胞毒性、促使DNA选择性断裂、抗病毒活性和药理学等的研究,是最有前景的应用领域之一。C60具有能量较低空轨道T1u,可以接纳6个电子,是一个优良的电子接受体;人体免疫缺陷病毒酶(HIVP)的活性中心的孔道大小与C60分子体积大小相匹配,有可能堵住孔道,切断病毒的营养供给,就可以杀死病毒;C60可用于治疗神经衰退方面的疾病;C60通过光诱导产生单态氧的效率高达100%,被喻为“单态氧的发生器”;实验表明,C60分子中6-6键是化学反应的活性部位,分子中含30个具有烯烃性质的6-6键,极易与自由基反应,被称为“吸收自由基海绵”;因此可应用于护肤、美容等方面。C60有30个双键,可以发生Diels-Alder反应、Bingel反应等,是药物设计的理想基体,可以根据需要接上多种基团,人们把C60喻为药物设计中的“化学针插”(chemical pin cushion)等。在生物医学领域展示出重要的研究价值和巨大的应用前景。
化学反应
亲核加成反应
亲核加成中富勒烯作为一个亲电试剂亲核试剂反应,它形成碳负离子格利雅试剂有机锂试剂等亲核试剂捕获。例如,氯化甲基镁与C60在定量形成甲基位于的环戊二烯中间的五加成产物后,质子化形成(CH3)5HC60。宾格反应也是重要的富勒烯环加成反应,形成亚甲基富勒烯。富勒烯在氯苯和三氯化铝的作用下可以发生富氏烷基化反应,该氢化芳化作用的产物是1,2加成的(Ar-CC-H)。
周环反应
富勒烯的[6,6]键可以与双烯体或亲双烯体反应,如D-A反应。[2+2]环加成可以形成四元环,如苯炔。1,3-偶极环加成反应可以生成五元环,被称作Prato反应。富勒烯与卡宾反应形成亚甲基富勒烯。
加氢(还原)反应
氢化富勒烯产物如C60H18、C60H36。然而,完全氢化的C60H60仅仅是假设产物,因为分子张力过大。高度氢化后的富勒烯不稳定,而富勒烯与氢气直接在高温条件下反应会导致笼结构崩溃,而形成多环芳烃。
氧化反应
富勒烯及衍生物在空气中会被慢慢的氧化,这也是通常情况下富勒烯需要在避光或低温中保存的原因。富勒烯与三氧化锇和臭氧等反应;与臭氧的反应很快很剧烈,可以生成羟基多加成的富勒醇混合物,因为加成数和加成位置有很宽的分布。
羟基化反应
富勒烯可以通过羟基化反应得到富勒醇,其水溶性取决于分子中羟基数的多少。一种方法是富勒烯与稀硫酸和硝酸钾反应可生成C60(OH)15,另一种方法是在稀氢氧化钠溶液的催化下反应由TBAH增加24到26个羟基。羟基化反应也有过用无溶剂氢氧化钠与过氧化氢和富勒烯反应的报道。用过氧化氢与富勒烯的反应合成C60(OH)8,羟基的最大数量,可以达到36至40个。
亲电加成反应
富勒烯也可以发生亲电反应,比如在富勒烯球外加成24个溴原子,最多亲电加成纪录保持者是C60F48。
参考资料
最新修订时间:2022-08-25 18:35
目录
概述
简介
参考资料