奇点
数学中的概念
奇点通常是一个当数学物件上被称为未定义的点,或当它在特别的情况下无法完序,以至于此点出现在于异常的集合中。诸如导数。参见几何论中一些奇点论的叙述。
介绍
对于实函数f(x)=h(x)/g(x),数学上称g(x)的零点 x=a为奇点。
切线中的奇点
实数x= 0。方程式g(x) = |x|(参见绝对值)亦含奇点x= 0(由于它并未在此点可微分)。同样的,在y=x有一奇点(0,0),因为此时此点含一垂直切线。
一个代数集合在(x,y)维度系统定义为y= 1/x有一奇点(0,0),因为在此它不允许切线存在。
几何学中的奇点
“几何意义上的奇点”,也是无限小且不实际存在的“点”。可以想象一维空间(如线),或二维空间(如面),或三维空间,当它无限小时,取极限小的最后的一“点”,这一个不存在的点,即奇点。
数学图论
在数学图论中,无向图G中,与顶点v关联的边的数目(环算两次),称为顶点v的度或次数,称度为奇数的顶点为奇点。
一笔画中的应用
奇点可用于判断一个图形是否能够一笔画出:当一个图形线条之间相通且奇点数为0或者2时,该图形可一笔画出。另:所有的端点都是奇点。
从这一点出发的线段数为奇数条偶点:从这一点出发的线段数为奇数条一笔画中可以有0个奇数点或者2个奇数点一笔画问题就是判断奇点的个数,要是0或2,就可以一笔完成,大于2,就不能了,还可以做推广,比如奇点数为4,要2笔;为6,要3笔而且在存在奇点的情况下,一定要从奇点出发。
参考资料
最新修订时间:2024-10-04 08:03
目录
概述
介绍
切线中的奇点
参考资料