多圆锥投影
地图投影种类
在切圆锥投影中,离开标准纬线愈远,变形愈大。如果制图区域包含纬差较大时,则在边缘纬线处将产生相当大的变形。因此,采用双标准纬线圆锥投影比采用单标准纬线圆锥投影变形要小些。如果有更多的标准纬线,则变形会更小些,多圆锥投影就是由这样的设想建立起来的。
概念
假设有许多圆锥与地球面上的纬线相切,将球面上的经纬线投影于这些圆锥面上,然后沿同一母线方向将圆锥剪开展成平面。由于圆锥顶点不是一个,所以纬线投影为同轴圆弧,其圆心都在中央经线的延长线上,除中央经线为直线外,其余的经线投影为对称于中央经线的曲线。凡是经纬线形式符合上述特征的,均称为多圆锥投影。由于多圆锥投影的经纬线系弯曲的曲线,具有良好的球形感,所以它常用于编制世界地图。
特点
多圆锥投影是地图投影中的一类。设有许多个同轴的圆锥面分别与各条纬线相切,用数学方法将经纬线投影到各圆锥面上,再沿母线剖开展成平面,然后沿中央经线接合而成,在正轴投影中,纬线为圆心在中央经线上的同轴圆弧,中央经线与赤道均为直线,其他经线为对称于中央经线的曲线,这种投影图上,纬线都是标准纬线,中央经线无长度变形。多圆锥投影已有等角、等积和任意多圆锥投影。广义的多圆锥投影包括所有纬线投影为同轴圆弧,经线为对称于中央经线的曲线,如普通多圆锥投影改良多圆锥投影、正交多圆锥投影、拉格朗日投影等。适用于小比例尺世界图和沿经线伸展地区图以及中纬度地区分国图。
圆锥投影
以圆锥面作为投影面,使圆锥面与地球面相切或相割,将地球面上的经纬线投影到圆锥面上,然后把圆锥面沿一条母线剪开展为平面而成。由于圆锥面与地球面相切或相割的位置不同,有正轴圆锥投影、横轴圆锥投影和斜轴圆锥投影。正轴圆锥投影是在投影时使圆锥的轴与地轴重合。投影后的经纬线形状比较简单,称为标准网。纬线为以圆锥顶点为圆心的同心圆弧,经线为由圆锥顶点向外放射的直线束,经线间的夹角小于相应的经度差。设地球面上两条经线的夹角为λ,投影在平面上为δ,则δ=cλ(c—圆锥常数)。纬线半径ρ随纬度而变化,即ρ是纬度φ的函数,一般用ρ=f(φ)式表达。故正轴圆锥投影的一般公式为:ρ=f(φ),δ=cλ,圆锥常数c与圆锥的切、割位置等条件有关。对于不同的圆锥投影,它是不同的。但对于某一个具体的圆锥投影,C值是固定的。总的说来,C值小于1,大于0,即0
由于ρ的函数形式不同,圆锥投影有等角圆锥投影、等积圆锥投影和任意(包括等距)圆锥投影,每一种中都有切圆锥投影和割圆锥投影。不论哪一种圆锥投影变形分布规律都是相同的。凡是切圆锥投影,相切的纬线是一条没有变形的线,称为标准纬线。从标准纬线向南、向北变形逐渐增大。凡是割圆锥投影,相割的两条纬线没有变形,是两条标准纬线。离开标准纬线愈远,变形愈大。等变形线与纬线平行,呈同心圆弧状分布。
圆锥投影适合于绘制中纬度沿东西方向延伸地区的地图。由于地球上广大陆地位于中纬度地区,圆锥投影经纬线形状又比较简单,所以它被广泛应用于编制各种比例尺地图。
普通
普通多圆锥投影除了中央经线和每一条纬线的长度比等于1外,即m0=1,n=1其余经线长度比均大于1。这个投影在中央经线上纬线间隔相等,在每一条纬线上经线间隔相等。普通多圆锥投影属于任意投影,中央经线是一条没有变形的线,离开中央经线愈远,变形愈大。这个投影适于作南北方向延伸地区的地图。美国海岸测量局曾用此投影制作美国海岸附近地区的地图。
普通多圆锥投影的另一个用途是绘制地球仪用的图形。把整个地球按一定经差分为若干带,每带中央的经线都投影为直线,各带的投影图在赤道相接,将这样的图形贴于预制的球胎上,就成为一个地球仪。
改良
改良多圆锥投影是由普通多圆锥改良而成的。过去长时期国际上用它编绘百万分之一分幅地图,这是由1909年伦敦国际地理学会议决定的,故又名国际百万分之一地图投影
国际百万分之一地图,在纬度0°—60°范围内,按纬差4°、经差6°分幅;在纬度60°—76°范围内,按纬差4°、经差12°分幅;在纬度76°—88°范围内按纬差4°、经差24°分幅。每幅单独投影。每幅图的南北两条边纬线是同轴圆弧,其圆心位于中央经线的延长线上。将这两条纬线按经差1°等分,过相应分点连成的直线即为各条经线。其他纬线是4等分各经线后,将相应分点联成的平滑曲线。
这个投影南北两条边纬线长度比等于1,其余纬线长度比均小于1,以中央纬线长度比为最小。在按经差6°的分幅中,距中央经线经差为±2°(在按经差12°的分幅中,距中央经线经差为±4°,在按经差24°的分幅中,距中央经线经差为±8°)的经线长度比等于1,中间经线长度比小于1,边缘经线长度比大于1。这种投影按变形性质来说属任意投影。由于每一幅图包括的范围不大,因而变形很小。在我国范围内长度变形不超过0.06%,面积变形不超过0.12%,角度最大变形不超过5’。故总的来说,这种投影精度还是很高的。但因它不具有等角条件,故现已被等角圆锥投影所取代。
等差分纬线
这个投影是由我国地图出版社于1963年设计的一种不等分纬线的多圆锥投影。赤道和中央经线是互相垂直的直线,其他纬线为对称于赤道的同轴圆弧,其圆心均在中央经线的延长线上;其他经线为对称于中央经线的曲线,各经线间的间隔,随离中央经线距离的增大而逐渐缩短,按等差递减。极点为圆弧,其长度为赤道的1/2。
任意投影
这种投影的变形性质属任意投影。我国绝大部分地区的面积变形在10%以内,面积比等于1的等变形线自东向西横贯我国中部;中央经线和纬度±44°交点处没有角度变形,我国境内绝大部分地区的角度最大变形在10°以内,少数地区在13°左右。地图出版社用这一投影编制过数种比例尺的世界政区图和其他类型的世界地图。
1976年地图出版社又拟定了另外一种不等分纬线多圆锥投影——正切差分纬线多圆锥投影,这个投影的经线间隔,由中央经线向东西两侧按与中央经线经差的正切函数递减。正切函数随角度增加递增速度越来越快。因此,正切差分纬线多圆锥投影的经线间隔,在中央经线附近变化较小,在远离中央经线的地方,变化较大。中国地图出版社1976年设计了这种投影并且中国地图出版社1981年出版的1:1400万世界全图采用了这个投影。
参考资料
最新修订时间:2022-08-25 14:59
目录
概述
概念
特点
参考资料