基因表达数据
直接或间接测量得到的基因转录产物 mRNA在细胞中的丰度
基因表达数据反映的是直接或间接测量得到的基因转录产物 mRNA在细胞中的丰度,这些数据可以用于分析哪些基因的表达发生了改变,基因之间有何相关性,在不同条件下基因的活动是如何受影响的。它们在医学临床诊断、药物疗效判断、揭示疾病发生机制等方面有重要的应用。高通量检测基因组 mRNA 丰度的方法主要是 cDNA 微阵列、寡核苷酸芯片,随着 cDNA 微阵列和寡核苷酸芯片等高通量检测技术的发展,我们可以从全基因组水平定量或定性检测基因转录产物 mRNA。由于生物体中的细胞种类繁多,同时基因表达具有时空特异性,因此,基因表达数据与基因组数据相比,要更为复杂,数据量更大,数据的增长速度更快
基本概念
基因表达数据中蕴含着基因活动的信息,可以反映细胞当前的生理状态,例如细胞是处于正常还是恶化状态、药物对肿瘤细胞是否有效等。对基因表达数据的分析可以获取基因功能和基因表达调控信息,这是生物信息学的重大挑战之一,也是 DNA 微阵列能够在生物医学领域中广泛应用的关键原因之一。
特点与研究方向
特点
基因表达数据分析的对象是在不同条件下,全部或部分基因的表达数据所构成的数据矩阵。通过对该数据矩阵的分析,可以回答一些生物学问题。对这些问题的回答,结合其它生物学知识和数据有助于阐明基因的表达调控路径和调控网络。揭示基因调控路径和网络是生物学和生物信息学共同关注的目标,是系统生物学研究的核心内容。
研究方向
1、分析单个基因的表达水平
根据在不同实验条件下,基因表达水平的变化,来判断它的功能,例如,可以根据表达差异的显著性来确定与肿瘤分型相关的特异基因。采用的分析方法有统计学中的假设检验等。
2、考虑基因组合
将基因分组,研究基因的共同功能、相互作用以及协同调控等。多采用聚类分析等方法。
3、尝试推断潜在的基因调控网络
从机理上解释观察到的基因表达数据。多采用反向工程的方法。
参考资料
最新修订时间:2022-07-14 10:55
目录
概述
基本概念
特点与研究方向
参考资料