土力学(Soil mechanics)是研究
土体在
力的作用下的应力-应变或应力-应变-时间关系和强度的应用学科,是
工程力学的一个分支。为
工程地质学研究土体中可能发生的
地质作用提供定量研究的理论基础和方法。主要用于土木、交通、水利等工程。
土力学是应用工程力学方法来研究土的力学性质的一门学科。土力学的研究对象是与人类活动密切相关的土和土体,包括人工土体和自然土体,以及与土的力学性能密切相关的地下水。奥地利工程师卡尔·太沙基(1883-1963)首先采用科学的方法研究土力学,被誉为现代土力学之父。土力学被广泛应用在地基、挡土墙、土工建筑物、堤坝等设计中,是土木工程、岩土工程、工程地质等工程学科的重要分枝。
远在古代,由于生产和生活上的需要,人们已懂得利用土来进行工程建设。例如中国很早就修建了万里长城、大运河、灵渠和大型宫殿等伟大建筑物;古埃及和巴比伦也修建了不少农田水利工程;古罗马的桥梁工程和腓尼基的海港工程也都具有重要意义。由于社会生产发展水平和技术条件的限制,发展极慢。直到18世纪中叶,这门学科仍停留在感性认识阶段。这是本学科发展的第一阶段。
第二阶段开始于产业革命时期。大型建筑物的兴建和有关学科的发展,为研究地基与基础问题提供了条件,人们开始从已得的感性认识来寻求理性的解释。不少学者从工程观点来进行土的力学问题的理论和试验研究。法国科学家C.-A.de库仑发表了著名的土的抗剪强度和土压力理论(1773),英国W.J.M.兰金也发表了土压力理论这两种土压力理论至今还被广泛应用。18世纪中期以前﹐人类的建筑工程实践主要是根据建筑者的经验进行的。18世纪中叶至20世纪初期﹐工程建筑事业迅猛发展﹐许多学者相继总结前人和自己实践经验﹐发表了迄今仍然行之有效的﹑多方面的重要研究成果。例如
法国的 C.-A. de
库仑发表了土压力滑动楔体理论(1773)和土的抗剪强度准则(1776)﹔法国的H.P.G.达西在研究水在砂土中渗透的基础上提出了著名线性渗透
定律(1856)﹔
英国的W.J.M.
兰金分析半无限空间
土体在自重作用下达到极限平衡状态时的
应力条件﹐提出了另一著名的土压力理论﹐与库仑理论一起构成了古典土压力理论﹔法国的J.V.博西内斯克(1885)提出的半无限弹性体中应力分布的计算公式﹐成为地基土体中应力分布的重要计算方法﹔
德国的O.
莫尔(1900)提出了至今仍广泛应用的土的
强度理论﹔19世纪末至20世纪初期
瑞典的A.M.阿特
贝里提出了黏性土的塑性界限和按
塑性指数的分类﹐至今仍在实践中广泛应用。19世纪中叶到20世纪初期,随着生产的发展,基础工程有了很大进步,桩基和深基础的理论和施工方法也大有发展。人们在工程实践中积累了大量有关土的实际观测和模型试验的资料,并对土的强度、土的变形和土渗透性等专门课题作了某些理论探讨。
从20世纪初以来是本学科发展的第三阶段。巨大工程的兴建、地基勘探、土工试验和现场观测技术的发展,促使人们开展理论研究并系统地总结实验成果。于是,土力学逐步形成了一门独立学科。奥地利学者K. 泰尔扎吉(又译太沙基)于1925年出版第一本土力学专著《土力学》,是土力学作为一个完整﹑独立学科已经形成的重要标志﹐在此专著中﹐他提出了著名的
有效压力理论。苏联学者H. M. 格尔谢瓦诺夫于1931年出版《土体动力学原理》。后来陆续出版了一些著作。但是,以古典弹性力学和塑性力学为基础的土力学不能满足实践要求,有些学者便把相邻学科的新概念引入土力学,如50年代E. C. W. A. 盖兹和中国陈宗基将流变学基本概念引进土力学,随着生产的发展,大批土力学专著纷纷问世,现代物理学、物理化学和胶体化学、流变学、塑性力学等基础科学的发展和电子计算机的应用,更为土力学开辟了许多新的研究途径。
土体是一种地质体。这就决定了这一学科的研究工作必须采用在地质学研究基础上的实验研究和
力学分析方法。土力学的研究内容分为基础理论和工程应用两个方面:
工程应用研究主要是通过现场试验和长期观测,研究解决土工建筑物、地基、地下隧道和防护抗震工程等的稳定性及其处理措施以及土体作用于挡土结构物上的侧压力,即土压力的大小和分布规律等工程实际问题;根据极限平衡原理用稳定性系数评价天然土坡的稳定性和进行人工土坡的设计﹔计算在自重和
建筑物附加荷载作用下土体的侧向压力﹐为设计挡
土结构物提供依据﹔改进和研制为进行上述研究所必需的技术﹑方法和仪器设备。
由于土的性质是极其复杂的,因而理论的发展是艰难的。关于土的理论,经过不少学者的艰辛研究和探讨,已取得不少成果,但进一步的发展还远没有结束。土力学的发展少不了三样法宝:理论、试验、计算机。作为当今科技的驱动器,计算机是不可或缺的,发展
数值分析是土力学的一个研究方向。数学是一切自然学科的基石,数学的发展必将促进土力学的发展,作为一个工程师,扎实的数学功底是其巨大的优势。天然土是复杂的,不可能按某种配方将其制作出来,因此数值模拟和理论分析不能解决所有问题,试验对土力学的发展是必不可少的,是相当重要的,经不起实验检验的理论,即使再完美也是没有任何实际工程意义的。只有合理利用这三样法宝,土力学才能走得更远。
高大建筑物﹑
核电站以及近海石油探采平台等
世界性地兴建﹐不断对土力学提出更高的要求。
裂隙对土体力学性能的控制性﹑非线性应力-应变的本构关系以及新的测试技术和设备等方面的研究将会有新的进展。
土力学.清华大学出版社[引用日期2013-11-26].
土力学.中国建筑工业出版社[引用日期2014-05-5].