因果分析图法又称
鱼刺图、树枝图,是一种逐步深入研究寻找影响
产品质量原因的方法。由于在实际工程管理过程中,产生质量问题的原因是多方面的,而每一种原因的作用又不同,往往需要在考虑综合因素时,按照从大到小、从粗到细的方法,逐步找到产生问题的根源。
分析方法
因果关系分析法,是从事物变化的
因果关系质的规定性出发,用
统计方法寻求
市场变量之间依存关系的数量变化函数
表达式的一类
预测方法。这类预测方法,在市场预测中常用的方法有两种:
当预测目标变量(称
因变量)由于一种或几种
影响因素变量(称
自变量)的变化而发生变化,根据某一个自变量或几个自变量的变动,来解释推测因变量变动的方向和程度,常用回归分析法建立
数学模型。
回归分析法:在掌握
大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的
回归关系函数表达式,来描述它们间数量上的平均变化关系。这种函数表达式称
回归方程式。
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做
多元回归分析。
回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为
线性回归分析和
非线性回归分析。
线性回归分析是最基本的方法,也是市场预测中的一种重要预测方法。
在市场经济条件下,市场作为社会经济活动的基本场所,它一方面是企业营销活动的环境,另一方面也将
社会经济系统视为其环境。这种市场现象间的
系统关系,使市场变量间的某些因果关系不能只研究自变量对因变量的影响,而忽视因变量对自变量的逆向影响或各种自变量之间的相互影响。
这样一种市场变量间相互依存的复杂关系,回归分析法往往就不能对其做出系统描述。
经济计量法就是揭示这类市场变量间复杂因果关系数量变化关系的方法。
经济计量法,是在以
经济理论和事实为依据的定性分析基础上,利用数理统计方法建立一组
联立方程式,来描述预测目标与相关变量之间
经济行为结构的动态变化关系。这组联立方程式称为
经济计量模型。
应用步骤
因果关系分析法预测应用的基本思路是:首先,通过对市场经济现象之间因果关系的分析探讨,说明现象之间相互联系的
规律性;然后,选择恰当数学模型描述因果关系主要变量间的关系形态;最后,根据数学模型预测
市场发展前景及可能达到的水平。
因果关系分析应用步骤大致如下:
(一)利用资料分析市场现象之间的因果关系,确定预测目标以及因变量和自变量
分析市场现象因果关系必须做到:
1.凭借人们拥有的经验、知识以及思维
判断能力,对预测问题在质的分析基础上,明确表征预测目标的运动规律及影响其变化的因素的诸多市场变量。
2.选定因变量和自变量。
通常情况下:
表征预测目标的变量称因变量(如卷烟零售量或额);
表征影响预测目标变化的各种因素的变量称自变量。
从市场预测过程来讲,明确预测目标选定因变量是首要任务,但能从众多影响预测目标的因素中选定参与预测的自变量,是保证预测结果
可信度的关键。
(二)根据变量之间的因果关系类型,选择数学模型,并经过运算,求出有关参数,通过
统计检验建立
预测模型。
市场的客观经济现象是十分复杂的,数学预测模型只能明确、形象地显示出市场从过去至现在发展过程中有关事件观察数据中呈现的因果关系,而如何确定符合市场需要及其变化
客观实际的预测值,还需要预测者掌握丰富的
市场信息,依靠个人的经验和
分析判断能力,最后做出科学判断。
运用量的分析中的因果关系分析法进行市场预测时,还需要与质的分析相结合,把各种主要因素考虑进去,参照已经出现和正在出现的可能性,综合
分析判断,对预测模型计算出来的预测值作恰当调整,确定最终预测值,使预测结果更接近实际。
类型
函数关系是指几种社会
经济现象之间存在着确定的数量关系。在预测具有此种函数关系的经济事物中。常用的方法有直线
回归模型、二次曲线模型、
指数曲线模型等预测方法。
相关关系指两种或两种以上的社会经济现象间存在着相互依存关系,但在数量上没有确定的对应关系。在这种关系中,对于自变量的每一个值,因变量可以有几个数值与之相对应,表现出一定的
波动性、
随机性,但又总是围绕着它们的
平均数并遵循着一定规律而变动。相关关系与函数关系是性质不同的两类变量间的关系。变量之间存在着
确定性数量对应规律的称为函数关系,可以用数学函数式表达。变量间不存在确定性数量对应规律的要用统计学的方法来研究。统计学上研究有关社会经济现象之间相互依存关系的密切程度叫做
相关系数。
相关分析可以得到一个表明相关程度的指标,称为相关系数。这种方法对于不能在实验室用实验方法分析的社会经济现象显得特别重要。通过相关分析,还可以测定和控制预测的误差,掌握预测结果的可靠程度,把
误差控制在一个范围内。
社会经济现象之间的相互关系是非常复杂的,表现出不同的类型和形态。从变量之间相互关系的方向来看。分为
正相关和负相关。在某些经济现象之间,当自变量x的值增加时,因变量y的值也随之相应地增加,这佯的相关关系就是正相关。当自变量x的值增加时,因变量y的值随之而呈减少的趋势,这种关系就是负相关。
从变量之间相互关系的表现形式来看,可分为
直线相关与非直线相关。当x值发生变动时,y值随之发生大致均等的变动(增加或减少),表现在图形上,其观察点分布于狭长的带形区域之内,并近似地表现为直线形式,这样的关系通称为
直线关系。当x值变动时,y值随之呈不均等变动(增加或减少),表现在图形上,其观察点的分布近似地表现为各种不同的曲线形式,这种相关关系通称为非直线相关。相关关系法重要的是确定判断变量相关系数。
3、因子推演法
因子推演法即根据引起某种社会经济现象变化的因子,来推测某种现象变化趋势。例如,每年新建立的家庭数目是住房
需要量的因子;青年结婚的数量是家俱和衣服的销售量的因子;婴儿
出生人数是玩具需要量的因子;汽车的销售量是
汽车配件需求量的因子等等。根据某经济现象的因子就可以预测它的
需求量变化趋势。