四边形不等式(Quadrilateral Inequality)是一种比较常见的优化动态规划的方法。
定义
如果对于任意的a1≤a2<b1≤b2,有m[a1,b1]+m[a2,b2]≤m[a1,b2]+m[a2,b1],那么m[i,j]满足
四边形不等式。
优化
设m[i,j]表示动态规划的状态量。
m[i,j]=min{m[i,k]+m[k,j]}(i≤k≤j)
m满足四边形不等式是适用这种优化方法的必要条件
对于一道具体的题目,我们首先要证明它满足这个条件,一般来说用
数学归纳法证明,根据题目的不同而不同。
通常的动态规划的复杂度是O(n^3),我们可以优化到O(n^2)
定义s(i,j)为函数m(i,j)对应的使得m(i,j)取得最小值的k值。
我们可以证明,s[i,j-1]≤s[i,j]≤s[i+1,j]
m[i,j]=min{m[i,k]+m[k,j]}(s[i,j-1]≤k≤s[i+1,j])
复杂度分析:不难看出,复杂度决定于s的值,以求m[i,i+L]为例,
(s[2,L+1]-s[1,L])+(s[3,L+2]-s[2,L+1])…+(s[n-L+1,n]-s[n-L,n-1])=s[n-L+1,n]-s[1,L]≤n
所以总复杂度是O(n)
证明
对s[i,j-1]≤s[i,j]≤s[i+1,j]的证明:
设mk[i,j]=m[i,k]+m[k,j],s[i,j]=d
对于任意k<d,有mk[i,j]≥md[i,j](这里以m[i,j]=min{m[i,k]+m[k,j]}为例,max的类似),接下来只要证明mk[i+1,j]≥md[i+1,j],那么只有当s[i+1,j]≥s[i,j]时才有可能有mk[i+1,j]≥md[i+1,j]
(mk[i+1,j]-md[i+1,j])-(mk[i,j]-md[i,j])
=(mk[i+1,j]+md[i,j])-(md[i+1,j]+mk[i,j])
=(m[i+1,k]+m[k,j]+m[i,d]+m[d,j])-(m[i+1,d]+m[d,j]+m[i,k]+m[k,j])
=(m[i+1,k]+m[i,d])-(m[i+1,d]+m[i,k])
∵m满足四边形不等式,∴对于i<i+1≤k<d有m[i+1,k]+m[i,d]≥m[i+1,d]+m[i,k]
∴(mk[i+1,j]-md[i+1,j])≥(mk[i,j]-md[i,j])≥0
∴s[i,j]≤s[i+1,j],同理可证s[i,j-1]≤s[i,j]
证毕
扩展
以上所给出的状态转移方程只是一种比较一般的,其实,很多状态转移方程都满足四边形不等式优化的条件。
解决这类问题的大概步骤是: