在
磁场和
电场理论中,为简化运算,引入了一些算子的符号,它们已经成为场论分析中不可缺少的工具,应用较多的有哈密顿算子和
拉普拉斯算子。哈密顿算子( Hamiltonian), 数学符号为▽,读作Nabla。量子力学中,哈密顿算子(Hamiltonian) 为一个可观测量(observable),对应于系统的的总能量。
记号▽ 读作“那勃乐(Nabla)”,在运算中既有微分又有矢量的双重运算性质,其优点在于可以把对矢量函数的微分运算转变为矢量代数的运算,从而可以简化运算过程,并且推导简明扼要,易于掌握。
记号读作“那勃勒”,在运算中既有微分又有矢量的双重运算性质,其优点在于可以把对矢量函数的微分运算转变为矢量代数的运算,从而可以简化运算过程,并且推导简明扼要,易于掌握。