由中国学者赵克勤在集对分析中创建的的同异反联系数,是用来描述所研究的事物中确定性与不确定性以及确定性与不确定性相互作用的一种结构函数,也简称联系数。
系数介绍
通常由该事物相对于某参考事物的确定性测度和不确定性测度两部份组成。
联系数的形式
联系数的基本形式为U=A(+)Bi ,也称为二元联系数、同异型联系数、确定-不确定联系数;把二元联系数展开后得三元联系数U=A(+)Bi(+)Cj,也称为三元联系数、同异反联系数;把三元联系数展开后得四元联系数U=A(+)Bi(+)Cj(+)Dk,把四元联系数展开后得五元联系数U=A(+)Bi(+)Cj(+)Dk(+)El,依次类推,有六元联系数、七元联系数、八元联系数、九元、十元、十一、十二元联系数….直至无穷多元联系数,记联系数元数为n,则当n趋向无穷大时,也把联系数简记为和的形式或积分的形式;通常,把四元以上联系数统称为多元联系数;其中,任一种n(n>2)元联系数的首末两项是相对确定的测度,中间的n-2项是相对不确定的测度,其不确定性主要由那些小写字母(系数)来表示,当末项的小写字母表示-1时,前面的各个小写字母就在[-1,1]区间中的各个子区间取值;与此同时的各个大写字母为非负实数;当末项的小写字母表示其它实数或虚单位时,其它的小写字母就有对应的其它取值区间。多元联系数中的各项也称为联系分量,一般把首项称为同分量,末项称为反分量;对于中间各项,靠近同分量的称为偏同分量,靠近反分量的称为偏反分量。偏同分量(偏反分量)又分为1级偏同(偏反),2级偏同(偏反),3级偏同(偏反)……n-2级偏同(偏反);当n是奇数时,居中的一项称为临界分量,临界分量的小写字母取值为零。当联系数中所有的大写字母各在[0,1]区间且他们的和为1时,也称为联系度;习惯上,联系度中的各个联系分量都用小写字母表示。当联系数(联系度)中的所有各项都是确定的数值时,联系数(联系度)也有相应的值,称为综合值,或辩证值、协同值;也有学者把联系度的综合值在不至引起误解的条件下称为联系数。注意:一个联系数在普通直角坐标系中的图象一般不是一个点,而是一条线段或一段曲线,由此可以看出联系数的特点。
伴随函数
一个联系数有多个伴随函数,有时也称伴随联系数。常见联系数的伴随函数有偏联系数、邻联系数、态势函数、势函数,复联系数,连联系数等,近来还有学者提出时滞联系数、时序联系数、动态联系数、等,还可以按联系数中联系范数的大小分为一阶联系数、二阶联系数、高阶联系数;以及一次联系数、二次联系数、三次联系数等等。此外,也可以把联系数看作n维向量,所以也可以用矩阵表示联系数,但与传统向量不同的是,联系数中的n-2维向量带有不确定性,因此在向量空间中不是一个点,而是一个线段或一段曲线。由于联系数中各个联系分量的系数作用,联系数中的各个联系分量存在相互作用。从而使一个联系数既是离散的,又是连续的。由于系统是由2个或2个以上要素组成的整体,因此联系数是一个系统。联系数因此具有系统性、层次性、可展性、不确定性等性质。目前,人们对联系数的本质和内涵还没有完全认识,还在深入研究之中。
联系数的英语译为:Connection number,简记为CN.
参考文献
[1] 赵克勤,
集对分析及其初步应用[M],杭州,浙江科技出版社,2000
[2] 赵克勤,联系数及其应用[J],吉林师范学院学报,1996,17(8):50-52。
[3]赵克勤,二元联系数A(+)Bi 的理论基础与基本算法及在人工智能中的应用[J],智能系统学报2008,3(6):476-486。
[4] 赵克勤,联系数学的原理与应用[J],安阳工学院学报,2009(2):107-110)
.[5]王文圣、李跃清、金菊良、丁晶,水文水资源集对分析[M],科学出版社,2010:13-17
[6]沈定珠,体育用联系数学[M],中国教育文化出版社,2007
[7]赵克勤、赵森烽,
奇妙的联系数[M]知识产权出版社,2014年3月:1-206