物理学术语,对交流电的频率进行变换的电路。一般还可同时控制
输出电压。主要应用于
变频调速装置、
感应加热装置、不停电电源等场合,分
直接变频电路、
间接变频电路。
直接变频电路是指不经过任何中间环节,直接将一种频率的交流电转变为另一种频率的交流电的电路。一般还可同时控制输出
电压。直接变频电路应用于变频调速装置、感应加热装置、
不停电电源等场合。与
间接变频电路相比,直接变频电路仅进行一次电能变换,变换效率较高。按变频电路的输出频率和输入频率的关系分,可分为直接降频电路、直接升频电路和直接升降频电路。
直接变频电路又称周波变流电路。它由两组反并联的
相控整流电路(正极组和负极组)组成。三相桥式相控整流器组成的直接降频电路。正极组和负极组
整流器交替地工作,即可输出一个低频的交流电压。直接降频电路按控制方式可分为定比式周波变流器和连续式周波变流器两种。①定比式周波变流器它的输出电压波形。电路的输出频率与输入频率有一定的比例关系,不能连续变化,输出电压的低次谐波较大,但控制方式简单,可用于频率精度要求不高的场合。②连续式周波变流器 它可连续改变正极组和负极组的触发滞后角,通过改变触发滞后角的变化周期改变输出频率,改变触发滞后角改变输出电压。它的输出频率和电压都是连续可调的。连续式周波变流器的输出电压波形。为使输出电压波形更接近于正弦波,各整流器的触发滞后角按余弦规律变化。连续式周波变流器的输出电压中包含有分数次谐波。当输出频率和输入频率之比大于三分之一时,这种分数次谐波会对负载产生恶劣的影响(见
高次谐波抑制)。在周波变流器中,同一组中
晶闸管换相与相控整流电路的换相相同(见
相控整流电路),而在负载电流过零时进行从正极组工作到负极组工作的转换。转换的方式有两种,一种是有环流式,另一种是无环流式。有环流式控制较简单,但需要在两组整流电路之间增设
限流电抗器限制环流。无环流式控制是按照检测出的负载电流的正负有选择地使正极组或负极组中的一组整流器工作,不产生环流。这种方式因无须设置
限流电抗器,
功率因数和效率都有所提高。但存在负载电流在过零点不连续的缺点。 直接降频电路主要应用于
交流电动机低速传动。它的优点无须换相电路;可以由负载向交流电源回馈电能;变流效率较高。缺点是晶闸管用量多,控制电路较复杂;输出频率变化范围较小,一般低于输入频率的三分之一。
先用整流器将输入的交流电转变为直流电,再用逆变器将直流电转变为所需频率的交流电。整流器采用
不控整流电路或相控整流电路。在要求变频器输出电压可变,而逆变器又无控制电压的能力的场合。
电路中的晶闸管利用电源电压换流,晶闸管关断条件好,它构成的变频器容量可以做得较大。主要应用于线绕式
异步电动机串级调速,高压直流输电,大电网的联接。
电路中的晶闸管利用负载电压换流。主要用于
同步电动机调速和感应加热装置中。用于同步电动机调速的变频电路输出频率不高,一般在几赫到几十赫范围,可以采用
普通晶闸管作为逆变器的开关元件,成本较低。在启动时,同步电动机反电动势为零,晶闸管不能利用负载电压换流,常采用电源换流或辅助强迫换流。用于感应加热的变频电路的输出频率较高,一般在几百赫到几万赫的范围。它的逆变电路种类很多,有
并联逆变电路、
串联逆变电路、串并联逆变电路、倍频式逆变电路和时间分割式逆变电路。并联逆变电路负载适应性强,适用于熔炼和透热。串联逆变电路可以在逆变器内部调节输出电压,启动比较方便,适用于淬火和钎焊。串并联逆变电路、倍频式逆变电路和时间分割式逆变电路适用于输出频率较高的应用场合。
主要用于异步电动机变频调速和恒压恒频装置中。逆变器中的晶闸管需要专门的辅助换流电路换流,电路较复杂。为了简化电路,在中、小功率的自换流逆变电路中常采用
功率晶体管等自关断元件。在简单的控制下,自换流逆变电路本身不能控制输出电压,当采用脉冲宽度控制时,自换流逆变电路不但能控制输出电压,还能改善输出电压的波形。
整流器将输入交流电转变为直流电,逆变器再将直流电转变成高频交流-直流-交流变频电路 交流电,经
变压器隔离后用直接式降频器再将高频交流电转变为所需频率的交流电。一般逆变器输出的频率大于2万赫,变压器的体积小,重量轻且无噪声。这种变频电路适用于多路输出,且要求各路输出电压互相隔离,又要求变换器体积小、重量轻的场合。