反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即称为该物体的反射波谱特性曲线,光谱反射率。物体的反射波谱的特征主要取决于该物体与入射辐射相互作用的波长选择,即对入射辐射的反射、吸收和透射的选择性。
简介
自1948年原
苏联的克里诺夫出版了有关
地物波谱特性研究以来,人们开展了大量的地物波谱特性的观测和研究。20世纪60年代美国为发射地球资源卫星曾全面地开展了地物波谱特性研究,20世纪70年代该项研究进入高潮.目前研究的波段基本覆盖了遥感所使用的波段,测量和研究的对象包括了自然界的植被、土壤、岩石、水体和人工建筑等地物.这些研究对认识遥感成像机理、遥感图像解译、遥感仪器最佳探测波段选择和遥感仪器研制等起到了推动作用.随着遥感应用的深入,遥感信息与地物相互作用的研究有了进一步发展;特别是
成像光谱仪的应用,不仅显示了地物波谱特性研究的重要性,而且也推动了这一领域的研究.因为它可以获得图谱合一的信息,可以直接将地物波谱特性和遥感图像结合在一起,在图像分析和应用方面都取得了很好的结果。现代遥感技术的发展,不仅延伸了地物的成像波段范围,而且可以在需要的任何波段独立成像或连续成像,提高了地物光谱分辨力,有利于区别各类物质在不同波段的光谱响应特性,突出特定地物反射峰值波长的微小差异。开展地物可见光和近红外反射波谱特征分析研究是对遥感图像进行数据利用和评价的物理基础。
地物的反射类别及反射特性曲线
地物波谱特性是电磁辐射与地物相互作用的一种表现,可见光和近红外波段主要表现地物反射作用和地物的吸收作用。因此,地物反射波谱特征也就是指地物可见光和近红外波段波谱特征。
根据地表目标物体表面性质的不同,物体反射大体上可以分为3种类型,即镜面反射、漫反射、方向反射(实际物体的反射)。
镜面反射是指物体的反射满足反射定律。当发生镜面反射时,对于不透明物体,其反射能量等于入射能量减去物体吸收的能量。自然界中真正的镜面很少,非常平静的水面可以近似认为是镜面漫反射,如果入射电磁波波长入不变,
表面粗糙度逐渐增加,这时整个表面均匀反射入射电磁波,入射到此表面的电磁辐射按照朗伯余弦定律反射,其反射辐照亮度是一个常数,这种反射面又叫朗伯面。实际地物表面由于地形起伏,在某个方向上反射最强烈,称为方向反射,是介于镜面和朗伯面(漫反射)之间的一种反射。
自然界中绝大多数地物的反射都属于这种类型的反射,又叫非朗伯面反射.它发生在地物粗糙度继续增大的情况下,反射具有各向异性,即实际物体面在有入射波时各个方向都有反射能量,但大小不同。
从空间对地面观察时,对于平面地区,并且地面物体均匀分布,可以看成漫反射;对于地形起伏和地面结构复杂的地区,为方向反射。
反射率是物体的反射辐射通量与入射辐射通量之比,这个反射率是在理想漫反射体的情况下,整个电磁波长的反射率.实际上由于物体固有的结构特点,对于不同波长的电磁波会产生有选择的反射,例如绿色植物的叶子由于表皮、叶绿素颗粒组成的栅栏组织和多孔
薄壁细胞组织构成。入射到叶子上的太阳辐射透过上表皮,蓝、红光辐射能被叶绿素吸收进行光合作用;绿光也吸收了一大部分,但仍反射一部分,所以叶子呈现绿色;而近红外线可以穿透叶绿素,被多孔薄壁细胞组织所反射。因此,在近红外波段上形成强反射。
反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即称为该物体的反射波谱特性曲线,光谱反射率。物体的反射波谱的特征主要取决于该物体与入射辐射相互作用的波长选择,即对入射辐射的反射、吸收和透射的选择性,其中反射作用是主要的。物体对入射辐射的选择性作用受物体的组成成分、结构、表面状态以及物体所处环境的控制和影响。
在漫反射的情况下,组成成分和结构是控制因素。雪的反射光谱与太阳光谱最相似,在蓝光0.49μm附近有个波峰,随着波长增加反射率逐渐降低.沙漠的反射率在橙色0. 6μm附近有峰值,但在长波范围里比雪的反射率要高。湿地的反射率较低,色调发暗灰.小麦叶子的反射光谱与太阳的光谱有很大差别,在绿波处有个反射波峰,在红外部分0.7-0.9μm附近有一个强峰值。
各种物体,由于其结构和组成成分不同,反射特性曲线的形状是不一样的,即便是在某波段相似,甚至一样,但在另外的波段还是有很大的区别的。
常见的几种地物类型波谱特征
1植被的反射波谱特性
由于植物均进行光合作用,所以各类绿色植物具有很相似的反射波谱特性,其特征是:在可见光波段0.55 μm (绿光)附近有反射率为10%-20%的一个波峰,两侧0. 45μm (蓝)和0. 67μm (红)则有2个吸收带.这一特征是由于叶绿素的影响造成的,叶绿素对蓝光和红光吸收作用强,而对绿色反射作用强.在近红外波段0. 8-1.01μm间有一个反射的陡坡,至1. 1μm附近有一峰值,形成植被的独有特征.这是由于植被叶的细胞结构的影响,除了吸收和透射的部分,形成的高反射率。
2土壤的反射波谱特性
自然状态下土壤表面的反射率没有明显的峰值和谷值,一般来讲土壤的光谱特性曲线与以下一些因素有关,即:土壤类别、含水量、有机质含量、砂、土壤表面的粗糙度、粉砂相对百分含量等。
土壤含水量增加,土壤的反射率就会下降,在水的各个吸收带,反射率的下降尤为明显.此外肥力也对反射率有一定的影响。土壤反射波谱特性曲线较平滑,因此在不同光谱段的遥感影像上,土壤的亮度区别不明显。
3水体的反射波谱特性
水体对0. 45-0. 56μm蓝绿光波段透射能力较强,一般深度可达10-20 m,清澈水体可达100 m的深度。同时,水体的反射也主要在蓝绿光波段,其他波段吸收率很强,特别在近红外、中红外波段有很强的吸收带,反射率几乎为零,因此在遥感中常用近红外波段确定水体的位置和轮廓,在此波段的黑白正片上,水体的色调很黑,与周围的植被和土壤有明显的反差,很容易识别和判读.但是当水中含有其他物质时,反射光谱曲线会发生变化。水含泥沙时,由于泥沙的散射作用,可见光波段发射率会增加,峰值出现在黄红区。水中含有叶绿素时,近红外波段明显抬高,这些都是影像分析的重要依据。
4岩石的反射波谱特性
岩石的反射波谱主要由矿物成分、矿物含量、物质结构等决定。影响岩石矿物波谱曲线的因素包括
岩石风化程度、岩石含水状况、矿物颗粒大小、岩石表面光滑程度、岩石色泽等。几种岩石的反射波谱曲线。在遥感探测中一般根据所测岩石的具体情况选择不同的波段。
5城市道路、建筑物的反射波谱特性
在城市遥感影像中,通常只能看到建筑物的顶部或部分建筑物的侧面,特别是建筑材料所构成的屋顶。铁皮屋顶表面成灰色,反射率较低而且起伏小,所以曲线较平坦。石棉瓦反射率最高,沥青粘砂屋顶,由于其表面铺着反射率较高的砂石而决定了其反射率高于灰色的水泥平顶.绿色塑料棚顶的波谱曲线在绿波段处有一反射峰值,与植被相似,但它在近红外波段处没有反射峰值,有别于植被的反射波谱。军事遥感中常用近红外波段区分在绿色波段中不能区分的绿色植被和绿色的军事目标。
城市中道路的主要铺面材料为水泥沙地和沥青两大类,少量部分有褐色地,它们的反射波谱特性曲线形状大体相似,水泥沙路在干爽状态下呈灰白色,反射率最高,沥青路反射率最低。
总结
20多年来,高光谱遥感已发展成一个颇具特色的前沿技术,并孕育形成了一门成像光谱学的新兴学科门类。它的出现和发展将人们通过遥感技术观测和认识事物的能力带入了又一次飞跃,续写和完善了光学遥感从全色经多光谱到高光谱的全部影像信息链.由于高光谱遥感影像提供了更为丰富的地球表面信息,其应用领域已涵盖地球科学的各个方面,在地质找矿和制图、大气和环境监测、农业和森林调查、海洋生物和物理研究等领域发挥着越来越重要的作用。地物目标反射波谱特征分析研究,除了可以提供遥感图像设计与成像依据外,还可为农业生产、资源调整、灾害预报与评估、工程建设、环境监测、城市发展等提供更加快速可靠的信息服务和辅助决策,因此,蕴含着巨大的经济效益和社会效益。