双通道内存技术其实是一种内存控制和管理技术,它依赖于
内存控制器发生作用,在理论上能够使两条同等规格内存所提供的
带宽增长一倍。它最早被应用于服务器和工作站系统中,后来为了解决台式机日益窘迫的
内存带宽瓶颈问题它又走到了台式机主板技术的前台。
简单定义
双通道,其实就是两个内存控制器。什么叫内存控制器呢?如果把CPU比如成工厂,内存比喻成仓库,那么内存控制器就是仓库管理员。单通道就是工厂到仓库只有一个门,一个管理员,每次只能提一批货。双通道就是又盖了一个仓库,又多了一个管理员,同时给工厂提供原料,每次提供的原料多了一倍。
我们加大内存就等于加大仓库,仓库大了,备货足,工厂不用老上外面买东西去,生产速度自然快。仓库管理员多了一个,多了一个给工厂提供原料的出口,仓库向工厂提供原料的速度加快,工厂自然也快了。大概就是这个道理。
技术支持
(1)对于Intel所有的CPU,和socket462架构的AMD K7产品,是否支持双通道,主要看主板或CPU有没有两个
内存控制器
(2)AMD所有的K8,以及现在新出的754架构的
闪龙,他们的系统内存控制器做到CPU里面了,也就是说仓库管理员的组织关系归CPU管,所以,这个系统,是否支持双通道,CPU说了算,跟主板没关系。例如所有754针脚的CPU都只能支持单通道,并不支持双通道。所有939针脚的CPU都支持双通道。
至于支持双通道的主板有哪些?我们常见的Intel的
芯片组,848,865PE(没有E不行)以上的,都会支持双通道。其他VIA,以及SIS等的芯片组主板,你应当在它产品信息里面查到是否双通道。如果是上面第二种情况,你只用考虑是买939的AMD,还是754的AMD就好了。
科学定义
双通道内存技术其实是一种内存控制和管理技术,它依赖于芯片组的
内存控制器发生作用,在理论上能够使两条同等规格内存所提供的带宽增长一倍。它并不是什么新技术,早就被应用于服务器和工作站系统中了,只是为了解决台式机日益窘迫的
内存带宽瓶颈问题它才走到了台式机主板技术的前台。在几年前,
英特尔公司曾经推出了支持双通道内存传输技术的i820
芯片组,它与
RDRAM内存构成了一对黄金搭档,所发挥出来的卓绝性能使其一时成为市场的最大亮点,但生产成本过高的缺陷却造成了叫好不叫座的情况,最后被市场所淘汰。由于英特尔已经放弃了对RDRAM的支持,所以目前主流芯片组的双通道内存技术均是指双通道DDR内存技术,主流双通道内存平台英特尔方面是英特尔 865/875系列,而AMD方面则是NVIDIA Nforce2系列。
解决问题
双通道内存技术是解决CPU
总线带宽与
内存带宽的矛盾的低价、高性能的方案。现在CPU的FSB(
前端总线频率)越来越高,
英特尔 Pentium 4比AMD Athlon XP对内存带宽具有高得多的需求。英特尔 Pentium 4处理器与北桥芯片的数据传输采用QDR(Quad Data Rate,四次数据传输)技术,其FSB是
外频的4倍。英特尔 Pentium 4的FSB分别是400/533/800MHz,总线带宽分别是3.2GB/sec,4.2GB/sec和6.4GB/sec,而DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec。在单通道内存模式下,DDR内存无法提供CPU所需要的数据
带宽从而成为系统的性能瓶颈。而在双通道内存模式下,双通道DDR 266/DDR 333/DDR 400所能提供的
内存带宽分别是4.2GB/sec,5.4GB/sec和6.4GB/sec,在这里可以看到,双通道DDR 400内存刚好可以满足800MHz FSB Pentium 4处理器的带宽需求。而对AMD Athlon XP平台而言,其处理器与北桥芯片的数据传输技术采用DDR(Double Data Rate,双倍数据传输)技术,FSB是
外频的2倍,其对内存带宽的需求远远低于
英特尔 Pentium 4平台,其FSB分别为266/333/400MHz,总线带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec,使用单通道的DDR 266/DDR 333/DDR 400就能满足其带宽需求,所以在AMD K7平台上使用双通道DDR内存技术,可说是收效不多,性能提高并不如英特尔平台那样明显,对性能影响最明显的还是采用集成
显示芯片的
整合型主板。
相关产品
NVIDIA推出的nForce芯片组是第一个把
DDR内存接口扩展为128-bit的芯片组,随后
英特尔在它的E7500服务器
主板芯片组上也使用了这种双通道DDR内存技术,SiS和VIA也纷纷响应,积极研发这项可使DDR
内存带宽成倍增长的技术。但是,由于种种原因,要实现这种双通道DDR(128 bit的并行内存接口)传输对于众多芯片组厂商来说绝非易事。DDR SDRAM内存和RDRAM内存完全不同,后者有着高延时的特性并且为串行传输方式,这些特性决定了设计一款支持双通道RDRAM内存芯片组的难度和成本都不算太高。但DDR SDRAM内存却有着自身局限性,它本身是低延时特性的,采用的是并行传输模式,还有最重要的一点:当DDR SDRAM
工作频率高于400MHz时,其信号波形往往会出现失真问题,这些都为设计一款支持双通道DDR内存系统的
芯片组带来不小的难度,芯片组的制造成本也会相应地提高,这些因素都制约着这项内存控制技术的发展。
普通的单通道内存系统具有一个64位的
内存控制器,而双通道内存系统则有2个64位的内存控制器,在双通道模式下具有128bit的
内存位宽,从而在理论上把
内存带宽提高一倍。虽然双64位内存体系所提供的
带宽等同于一个128位内存体系所提供的带宽,但是二者所达到效果却是不同的。双通道体系包含了两个独立的、具备互补性的智能内存控制器,理论上来说,两个内存控制器都能够在彼此间零延迟的情况下同时运作。比如说两个
内存控制器,一个为A、另一个为B。当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让等待时间缩减50%。双通道DDR的两个内存控制器在功能上是完全一样的,并且两个控制器的时序参数都是可以单独编程设定的。这样的灵活性可以让用户使用二条不同构造、容量、速度的DIMM内存条,此时双通道DDR简单地调整到最低的内存标准来实现128bit
带宽,允许不同密度/等待时间特性的DIMM内存条可以可靠地共同运作。
支持双通道DDR内存技术的台式机芯片组,英特尔平台方面有英特尔的865P/865G/865GV/865PE/875P以及之后的915/925系列;VIA的PT880,ATI的Radeon 9100 IGP系列,SIS的SIIS 655,SIS 655FX和SIS 655TX;AMD平台方面则有VIA的KT880,NVIDIA的nForce2 Ultra 400,nForce2 IGP,nForce2 SPP及其以后的芯片。
原理
随着前端总线为800MHz P4的推出,处理器对内存系统的带宽要求越来越高,
内存带宽成为系统越来越大的瓶颈。内存厂商只要提高内存的运行频率,就可以增加带宽,但是由于受到晶体管本身的特性和制造技术的制约,
内存频率不可能无限制地提升,所以在全新的内存研发出来之前,双通道内存技术就成了一种可以有效地提高内存带宽的技术。它最大的优势在于只要更改内存的控制方式,就可以在现有内存的基础上带来内存带宽的提升。从理论指标来看,双通道内存技术具有相当的优势。双通道DDR400的理论带宽为64GB/s,和英特尔的前端总线为800MHz的P4处理器及i865、i875
芯片组完全匹配。前端总线为800MHz的P4平台选用双通道DDR400,与双通道的内存控制和管理机制及高带宽有很大关系。
双通道内存技术其实就是双通道内存控制技术,它能有效地提高内存总带宽,从而适应新的微处理器的数据传输、处理的需要。双通道DDR有两个64bit
内存控制器,双64bit内存体系所提供的带宽等同于一个128bit内存体系所提供的带宽。
双通道体系包含了两个独立的、具备互补性的智能内存控制器,两个内存控制器都能够并行运作。例如,当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让有效等待时间缩减50%,因此
双通道技术使内存的
带宽翻了一翻。它的技术核心在于:
芯片组(北桥)可以在两个不同的数据通道上分别
寻址、读取数据,
RAM可以达到128bit的带宽。
发展
双通道内存技术最初是从RAMBUS推出的RDRAM内存条开始的。RAMBUS的
内存速度非常快,但是总线宽度却比
SDRAM内存还要小,因此它不得不结合Intel的双通道内存控制技术提高
带宽,达到高速
数据传输速率的目的。不过RAMBUS由于生产成本过高的原因,逐步被市场淘汰,但是双通道内存控制技术得到了发扬光大。如今Pentium 4采用的NetBurst架构对
内存带宽要求非常高,如果内存无法提供相应的
数据传输率,这么快的处理器总线速度也是无用的。
因此只有通过双通道内存控制技术才能够解决这个问题。最近金邦推出了DDR500内存条,单条的数据带宽达到4GB,如果使用
双通道技术,带宽将达到8GB。
应用
双通道内存主要是依靠
主板北桥的控制技术,与内存本身无关。目前支持双通道内存技术的主板有Intel的i865和i875系列,SIS的SIS655、658系列,nVIDIAD的nFORCE2系列等。Intel最先推出的支持双通道内存技术的
芯片组为E7205和E7500系列。
双通道内存的安装有一定的要求。主板的
内存插槽的颜色和布局一般都有区分。如果是Intel的i865和i875系列,主板一般有4个DIMM插槽,每两根一组,每组颜色一般不一样,每一个组代表一个内存通道,只有当两组通道上都同时安装了内存条时,才能使内存工作在双通道模式下。另外要注意对称安装,即第一个通道第1个插槽搭配第二个通道第1个插槽,依此类推。用户只要按不同的颜色搭配,对号入座地安装即可。
如果在相同颜色的插槽上安装内存条,则只能工作在单通道模式。而nFORCE2系列主板同样有两个64bit的
内存控制器,其中A控制器只支持一根
内存插槽,B通道则支持两根。A、B插槽之间有一段距离,以方便用户识别。A通道的内存插槽在颜色上也可能与B通道两个内存插槽不同,用户只要将一根内存插入独立的内存插槽而将另外一根插到另外两个彼此靠近的内存插槽就能组建成双通道模式。此外,如果全部插满内存,也能建立双通道模式,而且nForce2主板在组建双通道模式时对内存容量乃至型号都没有严格的要求,使用方便。
如果安装方法正确,在主板
开机自检时,屏幕显示内存的工作模式(如DDR333 Dual Channel Mode Enabled、激活双通道模式等),则内存已经工作在双通道模式。
存在问题
双通道内存控制技术的出现对使用P4的用户性能有了一定的提升,也是未来发展的趋势。组装双通道内存系统时要注意内存条的搭配,Intel的要求比其他主板要高,最好使用相同品牌、相同型号的内存条,以确保稳定性。
任何一项技术都有其优点也有其缺点,双通道DDR内存技术也不例外。首先,双通道内存都需要成对地使用,这样就大大降低了内存配置的灵活性。更重要的一点是在采购内存的时候至少要选择2×64MB、2×128MB……,这会使用户在内存方面的预算成倍地增加。其次,双通道内存技术的理论值虽然非常诱人,但是由于各种因素,其实际应用的性能并不能比单通道DDR内存高1倍,当然也无法比PC133 SDRAM高出4倍,因为毕竟在现有的系统条件下,系统性能瓶颈不仅仅是内存。从一些测试结果可以看到,采用128bit内存通道的系统性能比采用64bit内存通道的系统性能高出3%~5%,最高的可以获得15%~18%的性能提升。