压制干扰是在敌方雷达中注入干扰信号以使真实目标回波信号被干扰淹没的一种有源干扰方式。
工作原理
它主要通过在
雷达的调谐频带上产生宽带或窄带的
有源噪声信号,在空间
辐射形成压制干扰环境,人为地把噪声传给雷达的
接收机,增大其输入端的噪声水平,降低其信噪比,从而干扰雷达正常工作。从原理上说,由于压制干扰信号具有与雷达接收机内部噪声相似的特性,因而雷达接收机很难摆脱这种性质的有源干扰。
干扰方式
针对不同的要求,压制干扰系统可以提供多种不同的干扰方式,在这里主要介绍两种工作方式:宽带干扰方式和窄带跟踪干扰方式。宽带干扰方式又称为全波段干扰方式,它常用来覆盖雷达的整个调谐频带,它用来同时干扰所有处于这个频段内的雷达或干扰使用频率捷变或高分辨波形的雷达。它又可以分为三种工作方式:宽带噪声干扰、噪声闪烁于扰和扫频干扰。窄带跟踪干扰方式是一种点噪声干扰技术,它主要使干扰机辐射的窄带噪声信号带宽刚好宽到能有效地干扰雷达的工作频段,获得最大的干扰功率谱密度。
噪声干扰
宽带噪声干扰方式主要采用发射不间断的大
功率噪声信号,在空间形成压制干扰环境,从而提高对方雷达接收机的噪声水平。但是由于功率的分散将大大减小干扰功率谱密度,从而大大缩短了有效干扰距离。
闪烁干扰
闪烁干扰方式主要实现于空间形成时断时续的压制干扰环境。该工作方式不仅降低了干扰机本身的功率消耗,而且通过间断的大功率噪声发射,干扰
雷达正常工作。
扫频干扰
扫频干扰方式主要在雷达的整个调谐频带内重复进行点干扰,虽然此方式不能比宽带噪声干扰给出更多的平均功率,但是扫频干扰使每个雷达周期性地承担最大可能的功率。事实证明,通过调整扫描频率以保持雷达通带内的干扰时间约等于雷达发射
脉冲宽度,扫频干扰方式在产生
假目标方面是最有效的。并且对于扫描雷达,扫频干扰可产生足够可信赖的假目标。
跟踪干扰
窄带跟踪干扰方式是一种点噪声干扰技术,它主要使干扰机辐射的窄带噪声信号带宽刚好宽到能有效地干扰雷达的工作频段,获得最大的干扰功率谱密度。该工作方式更容易烧毁雷达中的高灵敏电路,使对方雷达难以短时间内恢复工作。
电路实现
本模拟系统设计了RS232串口程控与面板键盘操作两种控制方式,所有操作结果通过系统面板上的显示器显示。为了保证信号相参,系统采用
中频和
微波源分开体制,通过中频部分产生的中频信号输出,然后再经过变频处理调制到特定频段,再经
射频处理模块得到相应的压制噪声信号。系统主要包括六大功能模块。
噪声产生
该模块主要利用数字技术进行噪声源调制,解决了以往用模拟方法实现的噪声源带宽窄、控制难等技术难题。而且更加有利于不同带宽噪声的程控实现。
提取及变频
针对不同雷达的工作频段,噪声提取及变频模块主要完成
白噪声的分段提取,然后再经过变频处理生成相应频段的压制干扰信号。
分系统控制器
分系统控制器选用Amtd高性能单片机A髑9C5l,键盘和显示器控制采用Imel公司生产的通用可编程I/0接口器件82“/9.由于它本身可提供扫描信号,因而可代替
微处理器完成键盘和显示器的控制,从而减轻了主机的负担。电路中采用了4×6矩阵键盘,为用户提供功能切换、输出通道切换及其干扰参数设置。这些参数主要包括噪声的带宽、闪烁频率、扫描波频率、衰减量等。
射频处理
计算机远程控制
计算机控制模块主要实现该系统的远程程控,通过RS232串口跟分系统控制模块连接。
接收
接收模块作为压制干扰模拟系统一个重要的部分,在窄带跟踪干扰方式中尤为重要。接收模块设计的好坏将直接影响窄带跟踪干扰的性能,本模块中由于采用了数字式
鉴频电路,从而克服了鉴频精度低、鉴频带宽窄以及不易于程控等缺点,但是随着鉴频精度的提高,系统的反应时间相对滞后。所以高精度、高反应速度的鉴频电路正在迸一步的研究之中。
技术指标
(1)闪烁重复频率:1Hz一30№,连续可调。
(2)扫描重复频率:1KI-lz~201W-lz,连续可调。
(3)射频输出功率:30dBm(可由具体要求决定)。
(4)射频输出功率衰减:30dB,步进ldB.
(5)扫频波调制方式:锯齿波、正弦波、三角波等。