勒让德条件(Legendre condition)是
勒让德(A.-M.Legendre)于1786年得到的。对于一个给定的最简泛函,要检验维尔斯特拉斯条件是否成立,一般是比较困难的,勒让德条件是一种能代替维尔斯特拉斯条件的比较容易检验的条件。勒让德条件也是泛函取得极值的必要条件。
(或 ).
式(6)是勒让德于1786年通过研究二次变分提出来的,称为泛函式(1)的勒让德条件。如果式(6)是严格的不等式,则称为勒让德强条件。勒让德条件也是泛函取得极值的必要条件。泛函的一条极值曲线包含在极值曲线场中的充分条件是必须满足勒让德强条件。