分数大小比较
数学名词
分数大小比较指的是对于分母或分子相同的分数,可根据同分母或同分子分数比较大小的方法进行比较;对于分母和分子都不相同的分数,通常是采用先通分再比较大小的方法。
详解
对于分母或分子相同的分数,可根据同分母或同分子分数比较大小的方法进行比较;对于分母和分子都不相同的分数,通常是采用先通分再比较大小的方法。实际上,比较分数大小的方法有很多,同学们可根据要比较的分数的特点,选择适当的方法进行比较。下面就向同学们介绍几种比较分数大小的方法。
常见比较方法
化同分子法
先把分子不同的两个分数化成分子相同的两个分数,然后再根据“分子相同的两个分数,分母小的分数比较大”进行比较。
化成小数法
先把两个分数化成小数,再进行比较。
搭桥法
在要比较的两个分数之间,找一个中间分数,根据这两个分数和中间分数的大小关系,比较这两个分数的大小。
差等规律法
根据“分子与分母的差相等的两个真分数,分子加分母得到的和较大的分数比较大;分子与分母的差相等的两个假分数,分子加分母得到的和较大的分数比较小”比较两个分数的大小。
交叉相乘法
把第一个分数的分子与第二个分数的分母相乘的积当作第一个分数的相对值;把第二个分数的分子与第一个分数的分母相乘的积当作第二个分数的相对值,相对值比较大的分数比较大。
比较倒数法
通过比较两个分数倒数的大小,比较两个分数的大小。倒数较小的分数,原分数较大;倒数较大的分数,原分数较小。
相除法
用第一个分数除以第二个分数,若商小于1,则第一个分数小;若商大于1,则第一个分数大;若商等于1,则两个分数相等。
化整法
将两个分数同时乘其中一个分数的分母,把其中一个分数化为整数,然后再进行比较。
约分法
在比较两个分数之前,先将两个分数约分,然后再进行比较。
参考资料
最新修订时间:2023-06-29 16:49
目录
概述
详解
常见比较方法
参考资料