在
数学中,典型群(classical group)指与
欧几里得空间的
对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于
赫尔曼·外尔,他的专著 Weyl (1939) 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。
典型李群共同的特点是它们都与某个特定的双线性或半双线性形式的等距同构群密切联系。这四类用邓肯图标记(
下标n≥ 1),可以描述为:
为了某些特定的目的,去掉行列式为 1 的条件考虑酉群和(不连通)正交群也是自然的。表中所列即为所谓连通紧实形式群;在复数域中有相应的类比,以及多种非紧形式,例如,和紧正交群一起可考虑不定正交群。这些群相应的
李代数称为“典型李代数”。
在代数中,考虑更广泛的典型群,给出特别值得关注的
矩阵群。当矩阵群的系数环为实数或复数域时,这些群就是上述的典型李群。
当系数环是
有限域时,典型群是李型群。这些群在有限单群的
分类中扮演着重要的角色。考虑他们的抽象群理论,许多线性群有一个“特殊”子群,常常由行列式为 1 的元素组成,大部分有一个伴随的“射影”群,它们是除掉群
中心的商群。
“一般”一词在群的名称前面通常表示这个群可以用常数乘以某个形式,而不是保持不变。下标n经常表示群作用的模之维数。特别注意:这种记法和 Dynkin 图的n(为秩)可能冲突。
一般线性群GLn(R) 是某个
模的自同构群。有子群
特殊线性群SLn(R) ,以及商群
射影一般线性群PGLn(R) =GLn(R)/Z(GLn(R)) 和
射影特殊线性群PSLn(R) =SLn(R)/Z(SLn(R))。当n≥2 或n=2 且域R的阶数不为 2 或 3 时,域R上的射影特殊线性群PSLn(R) 为
单群。
酉群Un(R) 是保持某个模的半双线性形式的群。有子群
特殊酉群SUn(R),以及他们的商群
射影酉群PUn(R) =Un(R)/Z(Un(R)) 与射影特殊酉群PSUn(R) =SUn(R)/Z(SUn(R))。
辛群Sp2n(R) 保持一个模的斜对称形式。它有一个商群
射影辛群PSp2n(R)。将模的斜对称形式乘以一个可逆纯量的所有自同构组成一般辛群GSp2n(R) 。除了n=1 且域的阶数为 2 或 3 这两个例外,域R上射影辛群PSp2n(R) 是单群。
正交群On(R) 保持一个模的非退化
二次型。有子群
特殊正交群SOn(R),以及商群射影正交群POn(R) 与射影特殊正交群。在特征为 2 时,行列式总是 1,故特殊正交群常定义为Dickson 不变量为 1 的元素。
有一个没有名字的群,经常记为 Ωn(R),由所有Spinor 模为 1 的正交群中元素组成。相应的子群和商群为SΩn(R),PΩn(R),PSΩn(R)(对实数域上正定二次型,群 Ω 就是正交群,但一般要比正交群小)。Ωn(R) 也有一个二重复盖群,称为Spin 群Spinn(R)。一般正交群由在二次型上的作用为乘以一个可逆纯量的自同构组成。