光纤互阻放大器
运用于光纤通信线路中的放大器
光纤放大器(Optical Fiber Ampler,简写OFA)是指运用于光纤通信线路中,实现信号放大的一种新型全光放大器。
基本概念
互阻放大器是在光电检测前置放大中常用的一种电路结构。在互阻放大器的设计中没有增益带宽积的概念,其带宽分析往往让设计者感到困惑。为了深入研究互阻放大器的增益带宽特性在此类比增益带宽积的引出,用单极点近似的方法推导出了互阻放大器增益和带宽的关系,并运用Multisim软件进行了仿真,验证了结论的正确性。指出在互阻放大器中增益和带宽仍然是矛盾的。
光纤放大器(Optical Fiber Ampler,简写OFA)是指运用于光纤通信线路中,实现信号放大的一种新型全光放大器。根据它在光纤线路中的位置和作用,一般分为中继放大、前置放大和功率放大三种。同传统的半导体激光放大器(SOA)相比较,OFA不需要经过光电转换、电光转换和信号再生等复杂过程,可直接对信号进行全光放大,具有很好的“透明性”,特别适用于长途光通信的中继放大。可以说,OFA为实现全光通信奠定了一项技术基础。
OFA分类
根据放大机制不同,OFA可分为两大类。
1 、掺稀土OFA
制作光纤时,采用特殊工艺,在光纤芯层沉积中掺入极小浓度的稀土元素,如铒、镨或铷等离子,可制作出相应的掺铒、掺镨或掺铷光纤。光纤中掺杂离子在受到泵浦光激励后跃迁到亚稳定的高激发态,在信号光诱导下,产生受激辐射,形成对信号光的相干放大。这种OFA实质上是一种特殊的激光器,它的工作腔是一段掺稀土粒子光纤,泵浦光源一般采用半导体激光器。
当前光纤通信系统工作在两个低损耗窗口:1.55μm波段和1.31μm波段。选择不同的掺杂元素,可使放大器工作在不同窗口。
(1)掺铒光纤放大器(EDFA)
EDFA工作在1.55μm窗口,该窗口光纤损耗系数1.31μm窗低(仅0.2dB/km)。已商用的EDFA噪声低,增益曲线好,放大器带宽大,与波分复用(WDM)系统兼容,泵浦效率高,工作性能稳定,技术成熟,在现代长途高速光通信系统中备受青睐。目前,“掺铒光纤放大器(EDFA)+密集波分复用(DWDM)+非零色散光纤(NZDF)+光子集成(PIC)”正成为国际上长途高速光纤通信线路的主要技术方向。
(2)掺镨光纤放大器(PDFA)
PDFA工作在1.31μm波段,已敷设的光纤90%都工作在这一窗口。PDFA对现有光通信线路的升级和扩容有重要的意义。目前已经研制出低噪声、高增益的PDFA,但是它的泵浦效率不高,工作性能不稳定,增益对温度敏感,离实用还有一段距离。
2、 非线性OFA
非线性OFA是利用光纤的非线性效应实现对信号光放大的一种激光放大器。当光纤中光功率密度达到一定阈值时,将产生受激拉曼散射(SRS)或受激布里渊散射(SBS),形成对信号光的相干放大。非线性OFA可相应分为拉曼光纤放大器(SRA)和布里渊光纤放大器(BRA)。目前研制出的SRA尚未商用化。
OFA的研制始于80年代,并在90年代初取得重大突破。在现代光通信系统设计中,如何有效地提高光信号传输距离,减少中继站数目,降低系统成本,一直是人们不断探索的目标。OFA是解决这一问题的关键器件,它的研制和改进在全球范围内仍方兴未艾。
随着密集波分复用(DWDM)技术、光纤放大技术,包括掺铒光纤放大器(EDFA)、分布喇曼光纤放大器(DRFA)、半导体放大器(SOA)和光时分复用(OTDM)技术的发展和广泛应用,光纤通信技术不断向着更高速率、更大容量的通信系统发展,而先进的光纤制造技术既能保持稳定、可靠的传输以及足够的富余度,又能满足光通信对大宽带的需求,并减少非线性损伤。
光放大器的作用
放大电路是电子技术中广泛使用的电路之一,其作用是将微弱的输入信号(电压、电流、功率)不失真地放大到负载所需要的数值。放大电路种类:(1)电压放大器:输入信号很小,要求获得不失真的较大的输出压,也称小信号放大器;(2)功率放大器:输入信号较大,要求放大器输出足够的功率,也称大信号放大器。放大电路的作用:放大电路是电子技术中广泛使用的电路之一,其作用是将微弱的输入信号(电压、电流、功率)不失真地放大到负载所需要的数值。
放大电路种类
(1)电压放大器:输入信号很小,要求获得不失真的较大的输出压,也称小信号放大器;(2)功率放大器:输入信号较大,要求放大器输出足够的功率,也称大信号放大器。光放大器的工作不需要转换光信号到电信号,然后再转回光信号。这个特性导致光放大器比再生器有两大优势。第一,光放大器支持任何比特率和信号格式,因为光放大器简单地放大所收到的信号。这种属性通常被描述为光放大器对任何比特率以及信号格式是透明的;第二,光放大器不仅支持单个信号波长放大-像再生器,而且支持一定波长范围的光信号放大。而且,只有光放大器能够支持多种比特率、各种调制格式和不同波长的时分复用和波分复用网络。实际上,只有光放大器特别是EDFA的出现, WDM 技术才真正在光纤通信中扮演重要角色。EDFA 是现在最流行的光放大器,它的出现把波分复用和全光网络的理论变成现实。
主要类型
两种主要类型的光放大器在使用:半导体光放大器(SOA)和光纤光放大器(FOA)。半导体光放大器实质上是半导体激光器的活性介质。换句话说,一个半导体放大器是一个没有或有很少光反馈的激光二极管。
光纤放大器与半导体放大器的不同
光纤放大器的活性介质(或称增益介质)是一段特殊的光纤或传输光纤,并且和泵浦激光器相连;当信号光通过这一段光纤时,信号光被放大。光纤放大器又可以分为掺稀土离子光纤放大器(Rare Earth Ion Doped Fiber Amplifier)和非线性光纤放大器。像半导体放大器一样,掺稀土离子光纤放大器的工作原理也是受激辐射;而非线性光纤放大器是利用光纤的非线性效应放大光信号。实用化的光纤放大器有掺铒光纤放大器(EDFA)和光纤拉曼放大器(Raman Fiber Amplifier)。
互阻放大器的结构
在激光雷达、激光陀螺信号处理等应用中经常使用雪崩光电二极管等来探测光信号,从而提取出感兴趣的信息。将二极管产生的电流信号转换为电压信号需要采用图2所示的互阻放大器结构。
图中运放的正向端直接接地,Dphoto是接收信号用的光电二极管,反馈电阻Rf决定增益的大小,Vbias是反向偏置电压,它能够提高光电管相应的线性度,减小结电容,增大电路带宽。为了研究互阻放大器的频率特性,有必要使用光电管Dphoto的等效电路模型。
互阻放大器的特性
可选转换增益
可选拐角频率
电容式输入源补偿
可调功耗设置
可选输入参考电压
互阻放大器的应用
互阻放大器用于将外部电流转换为电压。典型应用包括使用光二极管等电流输出进行的传感器测量。TIA的转换增益单位为欧姆,其可用范围在 20 K 到 1.0 M 欧姆之间。光二极管等电流输出传感器的输出电容通常较大。这就需要在 互阻放大器中加入并联反馈电容,以保证稳定性。互阻放大器具有一个可编程的反馈电容,可以满足这一需要,并提供带宽限制,可降低宽频带噪声。
参考资料
光纤放大器简介及分类.电子发烧友.2010\u5e7408\u670814\u65e5
最新修订时间:2024-06-20 08:22
目录
概述
基本概念
参考资料