实现光纤通信,一个重要的问题是尽可能地降低光纤的损耗。 光纤损耗所谓损耗是指光纤每单位长度上的衰减,单位为dB/km。光纤损耗的高低直接影响传输距离或中继站间隔距离的远近,因此,了解并降低光纤的损耗对光纤通信有着重大的现实意义。
基本定义
光信号经光纤传输后,由于吸收、散射等原因引起光
功率的减小。光纤损耗是光纤传输的重要指标,对光纤通信的传输距离有决定性的影响。
实现
光纤通信,一个重要的问题是尽可能地降低光纤的损耗。
概念
所谓损耗是指光纤每单位长度上的衰减,单位为dB/km。光纤损耗的高低直接影响传输距离或中继站间隔距离的远近,因此,了解并降低光纤的损耗对光纤通信有着重大的现实意义。尽管光波有着极大的带宽,但在1961-1970年,人们主要研究利用大气传输光信号,实践证明,由于受到气候环境的严重影响,无法实现正常的通信。在人们考虑的其它传输介质中,用石英玻璃材料制成的光导纤维即光纤来传输光信号成为研究的重点。但是当时普通石英玻璃材料的损耗高达1000dB/km,传输距离很有限。1966年7月,英国标准电信研究所的英藉华人高锟(K.C.Kao)博士和霍克哈姆(G.A.HocKham)博士根据介质波导理论指出:光纤的高损耗并不是其本身固有的,而是由材料中所含的杂质引起的。并预言如果降低材料中的杂质含量,可使得光纤的损耗降至20dB/km,甚至更小。1970年,美国康宁(Corning)玻璃有限公司成功地研制了损耗为20dB/km的低损耗石英光纤,这使得光纤完全能胜任作为传输光波的传输媒介,也开辟了光纤通信的新纪元。
分类
一、光纤的吸收损耗
这是由于光纤材料和杂质对光能的吸收而引起的,它们把光能以热能的形式消耗于光纤中,是光纤损耗中重要的损耗,吸收损耗包括以下几种:
1、物质本征吸收损耗
这是由于物质固有的吸收引起的损耗。它有两个频带,一个在近红外的8~12μm区域里,这个波段的本征吸收是由于振动。另一个物质固有吸收带在紫外波段,吸收很强时,它的尾巴会拖到0.7~1.1μm波段里去。
(1)紫外吸收
光纤损耗
光纤材料的电子吸收入射光能量跃迁到高的能级,同时引起入射光的能量损耗,一般发生在短波长范围。
(2)红外吸收
光纤损耗
光波与光纤晶格相互作用,一部分光波能量传递给晶格,使其振动加剧,从而引起的损耗。
(3)本征吸收曲线
2、不纯物的吸收,主要是光纤材料中含有铁、铜、铬等离子,还有OH-。金属离子含量越多,造成的损耗就越大,只要严格控制这些金属离子的含量。可以使它们造成的损耗迅速下降。它们对短波长的影响很大,对长波长的影响较小。OH-离子在1.38μm、0.95μm二个波长上有吸收损耗峰,以1.38μm上的吸收最严重,在1.25μm波长上也有小的吸收峰。如把OH-离子含量降到十亿分之一以下,在1.38μm波长上的吸收损耗可以忽略不计,使整个长波长区成为平坦的无吸收损耗区(见图中1980年的曲线)。
3、原子缺陷吸收是光纤在制造过程中玻璃受到热激励或受强辐射时,产生原子缺陷而造成的损耗。
二、光纤的散射损耗
散射损耗是由于光纤材料组份中原子密度微起伏或光纤波导结构缺陷等使光功率耦合出或泄露出纤芯外所造成的损耗。
本征散射是材料散射中最重要的散射,其损耗功率与传播模式的功率成线性关系。它是由于材料原子或分子以及材料结构的不均匀性。使得材料的折射率产生微观的不均匀性而引起传输光波的散射。这种散射是材料固有的,不能消除,是光纤损耗的最低极限,瑞利散射即属于这一类。瑞利散射损耗与波长四次方成反比,在长波长上工作时,光纤的损耗可大大减小。
另一类本征散射是掺杂不均匀引起的,在光纤制造中,为了改变玻璃的折射率,需要掺杂某种氧化物,当氧化物浓度不均匀或起伏时就会引起这种散射。
非线性散射有受激布里渊散射和受激拉曼散射。介质在强光功率密度作用下,入射光子与介质分子发生非弹性碰撞时会产生声子,当光是被传播的声学声子所散射时,称为布里渊散射;当光是被分子振动或光学声子所散射时,称为拉曼散射。这两种受激散射都有一个阈值功率,只有超过此值时才会发生。在通常的光通信系统中,输入光纤的光功率一般较低,通常不产生非线性散射。
三、光纤的结构不规则损耗
结构不规则损耗是由于纤芯包层界面上存在着微小结构波动和光纤内部波导结构不均匀而引起的那部份损耗。光纤结构不规则时要发生模变换,将部份传输能量射出纤芯外而变成辐射模,使损耗增加。这种损耗可以靠提高制造技术来降低。
四、光纤的弯曲损耗
弯曲损耗是光纤轴弯曲所引起的损耗。任何肉眼可见的光纤轴线对于直线的偏移称作弯曲或宏弯曲。光纤弯曲将引起光纤内各模式间的耦合,当传播模的能量耦合入辐射模或漏泄模时,即产生弯曲损耗。这种损耗随曲率半径的减小按指数规律增大。另一类损耗是光纤轴产生随机的微米级的横向位移状态所成的,称作微弯损耗。产生微弯的原因是光纤在被覆、成缆、挤护套、安装等过程中,光纤受到过大的不均匀侧压力或纵向应力,或光纤制造后因涂覆层或外套的温度膨胀系数与光纤的不一致等造成的。
损耗原因
掺杂剂和杂质离子引起的吸收损耗
光纤材料中含有跃迁金属如铁、铜、铬等,它们有各自的吸收峰和吸收带并随它们价态不同而不同。由跃迁金属离子吸收引起的光纤损耗取决于它们的浓度。另外,OH-存在也产生吸收损耗,OH-的基本吸收极峰在2.7μm附近,吸收带在0.5~1.0μm范围。对于纯石英光纤,杂质引起的损耗影
响可以不考虑。
解决方法:(1)光纤材料化学提纯,比如达到99.9999999%的纯度。(2)制造工艺上改进,如避免使用氢氧焰加热(汽相轴向沉积法)
原子缺陷吸收损耗
光纤材料由于受热或强烈的辐射,它会受激而产生原子的缺陷,造成对光的吸收,产生损耗,但一般情况下这种影响很小。
引起光纤损耗的因素
光纤的损耗因素主要有吸收损耗、散射损耗和其他损耗。这些损耗又可以归纳为本征损耗、制造损耗和附加损耗等。
本征损耗
本征损耗是指光纤材料固有的一种损耗,是无法避免的,它决定了光纤的损耗极限。石英光纤的本征损耗包括光纤的本征吸收和瑞利散射造成的损耗。本征吸收是石英材料本身固有的吸收,包括红外吸收和紫外吸收。红外吸收是由于分子震动引起的,它在1500~1700nm波长区对光纤通信有影响;紫外吸收是由于电子跃迁引起的,它在700~1100nm波长区对光纤通信有影响。瑞利散射是由于光纤折射率在微观上的随机起伏所引起的,这种材料折射率的不均匀性使光波产生散射。瑞利散射在600~1 600nm波段对光纤通信产生影响。
光纤制造损耗
光纤制造损耗是在制造光纤的工艺过程中产生的,主要由光纤中不纯成分的吸收(杂质吸收)和光纤的结构缺陷引起。杂质吸收中影响较大的是各种过渡金属离子和OH-离子导致的光的损耗。其中OH-离子的影响比较大,它的吸收峰分别位于950nm,1240mm和1390nm,对光纤通信系统影响较大。随着光纤制造工艺的日趋完善,过渡金属的影响已不显著,最好的工艺已可以使OH-离子在1390nm处的损耗降低到0?04dB/km,甚至小到可忽略不计的程度。此外,光纤结构的不完善也会带来散射损耗。
附加损耗是在光纤成缆之后出现的损耗,主要是由于光纤受到弯曲或微弯时,使得光产生了泄漏,造成光损耗。
除上述3类损耗外,在光纤的使用中还会存在连接损耗、耦合损耗,如果光纤中入射光功率超出某值时还会有非线性效应带来的散射损耗。
光纤的损耗特性曲线——损耗谱
将以上三类损耗相加就可以得到总的损耗,它是一条随波长而变化的曲线,叫做光纤的损耗特性曲线——损耗谱。
从石英光纤的损耗谱曲线可以看到光纤通信所使用的三个低损耗“窗口”——三个低损耗谷,它们分别是850 nm波段——短波长波段、1310nm波段和1550nm波段——长波长波段。光纤通信系统主要工作在1310nm波段和1550nm波段上,尤其是1550nm波段,长距离大容量的光纤通信系统多工作在这一波段。
衰减系数相关因素
石英光纤损耗谱示意图
光纤的损耗谱形象地描绘了衰减系数与波长的关系。从光纤损耗谱可以看出,衰减系数随波长的增大呈降低趋势;损耗的峰值主要与OH-离子有关。另外,波长大于1600nm时损耗增大的原因是由于石英玻璃的吸收损耗和微(或宏)观弯曲损耗引起的。光纤的制造工艺可以消除光纤在1385nm附近的0H-离子的吸收峰,使光纤在整个1300~1600nm波段都有很低的损耗。
度量
总的来说,光信号在光纤中传播的时候,其功率随距离L的增加呈指数衰减:
光纤损耗
那么,评价光纤损耗特性可以通过损耗系数来衡量。光纤的损耗系数定义为:
光纤损耗
其中L为光纤长度,Pin和Pout分别为输入和输出光功率。一般标准单模光纤在1550nm的损耗系数为0.2dB/km。
本征光纤损耗
本征光纤损耗是指光纤材料固有的一种损耗,引起本征光纤损耗的因素主要有两个:光的散射和光的吸收。
光的散射是光纤损耗的另一个重要原因。光纤的散射损耗是指在玻璃结构中分子水准上的不规则所造成的光的散射。
光的吸收是光纤传输中引起光损耗的主要原因,这是由于光纤材料和杂质对光能的吸收而引起的,因此,光的吸收损耗也被称为光纤材料吸收损耗。
非本征光纤损耗
本征光纤损耗,包括光的吸收和散射,只是光纤损耗的一方面原因。非本征光纤损耗是光纤损耗的另一方面重要原因,通常是由光纤的不正当处理引起的。非本征光纤损耗主要有两种类型:对接损耗和弯曲损耗
在光纤网路中,光纤之间的互相连接是必然的。接续引起的光纤损耗不可避免,但可以经过恰当的处理减小到最小。选用光纤熔接或使用高质量的光纤连接器可能效降低因光纤接续所产生的损耗。