侧板由优质结构
钢板制造,制造精度超过澳洲及德国
国家标准。
简介
在
激振器大梁和横梁与侧板的连接部位,为消除过度的应力集中,采用特别加强结构对侧板进行加强。连接采用虎克铆钉铆固。位于筛板以下的侧板无突出结构,不会产生液体积聚,不会因此导致腐蚀。 侧板内侧下部防护层非常连续、光滑,极大地减少因冲刷造成结构腐蚀的可能性。侧板和横梁间无隙、无突出。
侧板构型对高超侧压进气道起动性能的影响
为了考察侧板构型对高超侧压进气道起动性能的影响,对相同收缩比下侧板分别为前掠和后掠构型的进气道开展了 Ma = 4 来流下的
风洞实验及相应的数值模拟研究。实验结果表明,侧板后掠进气道的起动性能优于侧板前掠构型,实验中侧板后掠进气道能够在 + 2°攻角时实现起动,而侧板前掠进气道仅能在 - 2°攻角时起动。对流场进行的数值模拟结果表明,侧板后掠进气道不但比侧板前掠进气道具有更高的内收缩段入口马赫数,而且交汇后的侧板激波与底板边界层干扰的强度较弱,使得边界层不易分离,两方面因素共同作用使得侧板后掠进气道的起动性能显著优于侧板前掠构型。
进气道构型及研究方法
1 进气道构型:
设计了侧板分别为前掠和后掠构型的两个高超侧压进气道模型,侧板的前掠角为 55°,后掠角为 30°。除了侧板构型存在差异外,两模型的其余的结构参数均保持一致。进气道底板采用三级楔角压缩,总压缩角为 14°,进气道的总收缩比为 6.0,内收缩比( 唇口横截面与出口横截面面积之比) 为 1.45,侧向收缩比为 1.67,入口迎风面的高度 H = 99mm。
2 实验方法:
实验研究在
国防科技大学 STS 重点实验室( Science and Technology on Scramjet Laboratory) 的Φ440mm 高焓
自由射流试验系统中进行,实验中主要考察模型进气道在低马赫数来流下的起动情况。实验中对进气道底板壁面中心线上的沿程静压分布进行测量,除此之外,还在进气道模型出口的后方连接一段驻室和喉道,并测量驻室和喉道内相应位置的壁面静压,以考察进气道的流量捕获性能。实验中所有压力的测量均采用 9116 型压力扫描阀进行。
3 数值模拟方法:
数值模拟所采用的控制方程为理想气体可压 N-S 方程,采用有限体积法离散,使用三维定常隐式求解器求解,流动方程的无粘项采用二阶 Roe 格式离散,粘性项采用二阶中心差分格式离散,气体比热比为 1.38,气体分子粘性采用 Sutherland 公式计算,湍流模型为 k-ω SST 模型。
进气道起动性能对比
由于数值模拟难以准确地获取进气道的起动性能,采用
风洞实验的方法来考察进气道的起动性能,实验中通过测量进气道底板壁面中心线上的沿程静压分布来判断进气道的起动情况。进气道起动与否与其内收缩段入口处的马赫数大小有关,对具有前体压缩的高超侧压进气道来说,通过改变进气道本身的攻角可以相应地改变进气道内收缩段入口马赫数的大小。由于风洞喷管出口的马赫数恒定,所以采用改变进气道攻角的方式来对比侧板前掠与后掠构型进气道的起动性能。
1 侧板后掠进气道起动性能:
对侧板后掠进气道分别进行了 Ma = 4.0 来流条件下攻角为 0°和 + 2°的风洞实验,+ 2°攻角实验中驻室和喉道的压力显著高于 0°攻角实验,由于喉道面积相等,所以流量与气流的总压成正比,而气流总压越高则驻室压力越高,说明攻角增加的情况下,进气道的捕获流量获得了大幅提升。
2 侧板前掠进气道起动性能:
对侧板前掠进气道进行了 Ma = 4.0 来流条件下攻角分别为 0°,- 1°和 - 2°的三次风洞实验,对比侧板后掠和前掠构型进气道的实验结果可以发现,侧板后掠进气道的起动性能优于侧板前掠构型。
振动筛侧板及筛框动态设计
振动筛是冶炼设备中的关键设备之一, 该设备由于是在高作业率、高温、高粉尘的恶劣条件下运转的关键设备,在所有的烧结设备中筛子维修的工作量占比例较大,其故障以侧板振裂、断裂、筛框扭曲变形较为突出,所以有必要对其进行动力学分析,从而为设计提供参考。
振动筛侧板的动力学结构改进
对振动筛的动力学改进的主要目的是使结构的固有频率远离其工作频率,防止共振, 减少噪声。侧板的几何参数、物理参数可采用三维实体CAD软件Pro /E 计算得 到。根据已有的二维零件和总成图纸,在Pro /E 中建立振动筛侧板的三维模型,输入材料特性参数后,即可获得侧板的零部件质量、质心位置、转动惯量等原始模型数据。通过正确的ANSYS和Pro /E接口的配置方法,实现了数据的无缝连接。
振动筛筛框的动力学结构改进
完成了振动筛侧板的模态分析之后,来讨论振动筛筛框的动力学改进的问题。筛框是由板和梁铆接而成的具有对称结构的弹性体,尽管筛框的结构具有对称性,但仍必须按整体进行分析,因为在动态分析中求得的各阶振型并非完全以结构对称面而对称,如按对称结构取其一半进行分析就会丢掉偶数阶振型,使计算结果失真。
结论
由于振动筛在工作时其故障以侧板振裂、断裂、筛框扭曲变形较为突出, 所以以上主要针对振动筛侧板及筛框的动态特性进行了研究,求出固有频率和固有振型,找出侧板及筛框结构上不合理的地方并进行了动力学改进,使其固有频率远离工作频率10% 以上,有效地提高了振动筛性能。计算分析对研制同类型系列化环保、节能自同步香蕉形振动筛提供了计算分析依据,并可推广应用 到其它大型筛的模态选型、参数化设计。
齿轮泵轴向浮动侧板力矩平衡机制改进
外啮合齿轮泵作为动力元件被广泛用于农业机械、工程机械等行业中,然而长期以来中高压大排量齿轮泵由于其侧板在多工况条件下的自平衡能力不足导致的磨损问题而得不到普及与发展,因而对齿轮泵轴向浮动侧板在多工况下的浮动力矩平衡机制的研究与控制是一项亟待解决的问题。
磨损现象
磨损原因为齿轮泵浮动侧板在多工况条件下其浮动侧板原有的平衡状态因工况的变化而变化,从而导致侧板被压紧在齿轮端面上产生磨损。
齿轮泵内流场分布随着外界负载的变化而变化,即齿轮泵轴向浮动侧板正向摩擦面的压力梯度会随着负载的变化而变化,为了更好地平衡侧板浮动力矩,提出了一种新型的连通式平衡机制。
齿轮泵内部流场模型
齿轮泵内流场分布随着外界负载的变化而变化,即齿轮泵轴向浮动侧板正向摩擦面的压力梯度会随着负载的变化而变化,为了更好地平衡侧板浮动力矩,提出了一种新型的连通式平衡机制。
2种平衡机制下的典型侧板结构对比
特点是将背面压力补偿区与正面摩擦面隔离开,在补偿面形成一个只与泵体出油口相联通的半封闭油腔;特点是在侧板背面压力补偿区的末端开了一小孔,将背面压力补偿区与侧板正面摩擦面压力区连通。
浮动力矩模型
不同厂家的轴向浮动侧板结构不尽相同,但结构基本全为轴对称结构,并且其压力区也基本可分为泄露区、压力递变区、出口区、进口区,为了实现对侧板浮动力矩的测量,需要建立基于离散特征点的参数化力矩模型。通过对齿轮泵内部流场建模,定性给出了轴向浮动侧板在多工况条件下浮动力矩的非线性特点。