形如y'+P(x)y=Q(x)y^n的
微分方程,称为伯努利微分方程,其中n≠0并且n≠1,其中P(x),Q(x)为已知函数,因为当n=0,1时该方程是
线性微分方程。它以
雅各布·伯努利(Jacob Bernoulli)命名,他在1695年进行了研究。伯努利方程是特殊的,因为它们是具有已知精确解的非线性微分方程。
伯努利方程的特殊情况是逻辑微分方程。
形如y'+P(x)y=Q(x)y^n的微分方程,称为伯努利微分方程,其中n≠0并且n≠1,其中P(x),Q(x)为已知函数,因为当n=0,1时该方程是
线性微分方程。它以雅各布·伯努利(Jacob Bernoulli)命名,他在1695年进行了研究。伯努利方程是特殊的,因为它们是具有已知精确解的非线性微分方程。
伯努利方程的著名特殊情况是逻辑微分方程。