伦敦方程
材料工程学术语
伦敦方程是F.London和H.London(伦敦兄弟)所建立的描述超导体性质的方程。伦敦方程含有两个方程,分别成为伦敦第一方程以及伦敦第二方程。其中伦敦第一方程描述超导体的零电阻性质,伦敦第二方程描述的是超导体的抗磁性。
简介
根据二流体模型,超导体中的电子由两部分组成,一部分仍与普通导体中的电子相同,称为正常电子,遵从欧姆定律;另一部分具有超导电性,运动时不受任何阻力,称为超导电子。
作用
伦敦方程预言了表面透入层的存在。而且当超导体的尺寸与λ相近时,磁场会透入到样品中心。因此小尺寸超导体不具有完全抗磁性,它在磁场中的能量就比大块超导体低,从而临界磁场会高于大块样品。
另一方面,实验发现,对于锡、铟等超导体,λ的测量值以及临界磁场与样品尺寸的关系,与伦敦理论只是定性的符合,在数量上并不一致,有的甚至定性的关系也不符合。
提出
1935年伦敦兄弟提出描述超导电子运动规律的方程:
(1)
(2)
以上两个方程分别是伦敦第一方程和伦敦第二方程。第一方程描述的是超导体零电阻的性质,第二方程描述的是超导体的抗磁性。式中 是超导电流, 是超导电子的密度,m和e分别为电子的质量和电荷。
伦敦穿透深度
在一些情况下,由伦敦方程我们可以得到超导体内磁感应强度的方程:
由上述关系式定义london穿透深度λ= ,其中α=
穿透深度的物理意义是超导体内部磁感应强度在穿透深度λ处衰减到表面数值的 。
理论缺陷
1.无法解释穿透深度随着外界变量而改变的现象。
2.无法解释界面能为负的现象。
参考资料
最新修订时间:2024-07-01 21:12
目录
概述
简介
作用
提出
参考资料