临界雷诺数
气动力学名词
临界雷诺数(critical Reynold’s number),当流体在管道中、板面上或具有一定形状的物体表面上流过时,流体的一部或全部会随条件的变化而由层流转变为湍流,此时,摩擦系数、阻力系数等会发生显著的变化。转变点处的雷诺数即为临界雷诺数。
由来
雷诺根据大量的实验发现,由层流转变为湍流的转变过程非常复杂,不仅与流速v有关,而且还与流体密度ρ、粘滞系数μ和物体的某一特征长度d例如管道直径、机翼宽度、处于流体中的球体半径等)有关。他综合以上各方面的因素,引入一个无量纲的量ρvd/μ,后人把这无量纲的参数命名为“雷诺数”。流体的流动状态由雷诺数决定,雷诺数小时作层流,雷诺数大时作湍流。换言之:流速越大,流过物体表面距离愈长,密度越大,层流边界层便愈容易变成湍流边界层。相反,粘性越大,流动起来便愈稳定,愈不容易变成湍流边界层。流体由层流向湍流过渡的雷诺数,叫做临界雷诺数,记作Re。
对于圆形管道引入 Re= pvd/μ。实验表明,流体通过圆形管道时其临界雷诺数为Re≈2000—2600;通过光滑的同心环状缝隙时 Re=1100;而在滑阀阀口处,Re=260。
原理
雷诺通过圆管内的黏性流动实验,发现一定条件下层流转化为湍流的控制因素是雷诺数Re。由层流转变为湍流的雷诺数称为临界雷诺数Reα。它不是一个固定的值,依赖于外部扰动的大小。如果所受的扰动小,Reα较大;反之,Reα较小。
实验证明:Reα的下界约为2000,当Re<2000时,黏性力的抑制作用占优,不管外部扰动有多大,管内流动总保持稳定的层流状态。当Re>2000而小于某一上界时,流动出现不稳定,在管内(离入口较远处),层流与湍流共存。当Re大于某上界时,黏性力已无法抑制扰动的增长,导致流动失稳,成为随机的脉动运动,即转变为完全发展的湍流。
从空间角度看,即使Re>Reα,在管内中心沿流动方向也存在着层流区、过渡区和湍流区,这是因为管道入口处扰动由小到大的增长需要一定的时间,即需要经历一定的空间区域,湍流不是在某一空间位置突然发生的。
雷诺试验
早在19世纪初,就有人注意到流体在不同的流速范围内,断面流速分布和能量损失规律等都不相同。1883年,英国物理学家雷诺通过实验揭示了流体的两种不同的流动状态。
在水箱A的侧面开一个小孔,接一根进口为流线型管嘴的玻璃管丁,在玻璃管丁的末端装有节门C以调节流量。在水箱的上部装有储存带色液体的容器,用一根细管将带色液体引至玻璃管丁的入口,其流量用节门E调节。
实验前,先把水注入水箱中,利用溢流槽保持水位不变。然后,稍稍打开节门c,使水缓慢地由玻璃管T流出。打开节门E,使带色液体也流入玻璃管中。此时在玻璃管丁内看到一条细线形状的带色液线。这说明液体质点在作互不干扰、各自成层的平行直线流动。
将节门C逐渐开大,玻璃管T内水的流速也逐渐增大,起初带色液线并无变化,直到管内流速增大到某一数值时,带色液线开始颤动和分散。
随着玻璃管T内流速的继续增大,达一定数值后,带色液线不再连续,而是立即分散并与水相混淆。这说明液体质点已相互掺混,在杂乱无章地向前运动。
通过雷诺实验人们认识到,流动存在以下三种不同的状态。第一种,流体的质点之间互不掺混、质点的运动轨迹为有条不紊的层状流动,称为层流;第二种,流体的质点之间相互掺混、质点的运动轨迹为杂乱无章的流动,称为紊流;第三种,表现为层流到紊流或紊流到层流的过渡,称为过渡状态。随流速的变化而呈现不同的流动状态,是自然界中一切流体运动普遍存在的物理现象。
参考资料
最新修订时间:2023-12-23 23:27
目录
概述
由来
参考资料