中断机制是现代计算机系统中的基本机制之一,它在系统中起着通信网络的作用,以协调系统对各种外部事件的响应和处理,中断是实现
多道程序设计的必要条件,中断是CPU 对系统发生的某个事件作出的一种反应。引起中断的事件称为中断源。中断源向CPU 提出处理的请求称为中断请求。发生中断时被打断程序的暂停点称为断点。CPU暂停现行程序而转为响应中断请求的过程称为中断响应。处理中断源的程序称为中断处理程序。CPU执行有关的中断处理程序称为中断处理。而返回断点的过程称为中断返回。中断的实现由软件和硬件综合完成,硬件部分叫做硬件装置,软件部分称为软件处理程序。
既然硬件的响应这么慢,那么
内核就应该在此期间处理其他事务,等到硬件真正完成了请求的操作之后,再回过头来对它进行处理。想要实现这种功能,
轮询(polling)可能会是一种解决办法。可以让
内核定期对设备的状态进行查询,然后做出相应的处理。不过这种方法很可能会让那个内核做不少无用功,因为无论硬件设备是正在忙碌着完成任务还是已经大功告成,轮询总会周期性的重复执行。更好的办法是由我们来提供一种机制,让硬件在需要的时候再向
内核发出信号(变内核主动为硬件主动),这就是中断机制。
中断使得硬件得以与处理器进行通信。举个例子,在你敲打键盘的时候,
键盘控制器(控制键盘的硬件设备)会发送一个中断,通知操作系统有键按下。中断本质是一种特殊的电信号,由硬件设备发向处理器。处理器接受到中断后,会马上向操作系统反映此信号的到来,然后就由os负责处理这些新到来的数据。硬件设备生成中断的时候并不考虑与处理器的
时钟同步——换句话说就是中断随时可以产生。因此,
内核随时可能因为新到来的中断而被打断。
不同的设备对应的中断不同,而每个中断都通过一个惟一的数字标识。因此,来自键盘的中断就有别于来自硬盘的中断,从而使得操作系统能够对中断进行区分,并知道哪个硬件设备产生了哪个中断。这样,操作系统才能给不同的中断提供不同的
中断处理程序。
在它执行程序的时候,如果有另外的事件发生(比如用户又打开了一个程序)那么这时候就需要由
计算机系统的中断机制来处理了。
举个例子,CPU老板是一家公司的光杆司令,所有的顾客都要他亲自跑去处理,还要跟有关部门打点关系,CPU觉得顾客和公关这两样事它一个人搞不来,这就是轮询;终于这家公司升级发展了,CPU老板请了一个秘书,所有的顾客都先由秘书经手,CPU心情好的时候就去看一下,大部分时间都忙着去公关了,这时它觉得轻松了很多,这就是中断了~~
也就是说,中断和轮询是从CPU老板的角度来看的,不管怎样,事件都还是有人来时刻跟踪才能被捕获处理,不过是老板还是秘书的问题。所有的中断(或者异步,回调等)背后都有一个轮询(循环,listener)。