三重积分
数学术语
设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为rᵢ(i=1,2,...,n),体积记为Δδᵢ,||T||=max{rᵢ},在每个小区域内取点f(ξᵢ,ηᵢ,ζᵢ),作和式Σf(ξᵢ,ηᵢ,ζᵢ)Δδᵢ,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。
定义
设三元函数z=f(x,y,z)定义在有界闭区域Ω上将区域Ω任意分成n个子域Δvi(i=123…,n)并以Δvi表示第i个子域的体积.在Δvi上任取一点 作和 .如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y,z)在区域Ω上的三重积分,记为 ,即 ,其中dv叫做体积元素。
其中,∫∫∫称为三重积分号,f(x,y,z)为被积函数,f(x,y,z)dv称为被积表达式,dv称为体积元,x、y、z为积分变量,Ω为积分区域, 为积分和。
性质
线性性质
(1) (k为常数),被积常数中的常数因子可以提到三重积分号外面。
(2)设α、β为常数,则 ,函数的和(或差)的三重积分等于各个函数的三重积分的和或差。
可加性质
如果空间闭区域G被有限个曲面分为有限个子闭区域,则在G上的三重积分等于各部分闭区域上三重积分的和。
不等性质
如果在G上,f(x,y,z)≤φ(x,y,z),则有,特殊地,若函数f(x,y,z)在Ω上可积,则|f(x,y,z)|亦在Ω上可积,且有。
估值性质
设M、m分别为f(x,y,z)在闭区域G上的最大值和最小值,V为G的体积,则有mV≤≤MV。
积分中值定理
设函数f(x,y,z)在闭区域G上连续,V是G的体积,则在G上至少存在一个点 使得
另外由重积分的性质知,当f(M)=1时,三重积分 ,这里V(Ω)表示空间域Ω的度量,即V(Ω)表示Ω的体积。
计算方法
直角坐标系法
适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法
⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
①区域条件:对积分区域Ω无限制;
②函数条件:对f(x,y,z)无限制。
⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。
①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成
②函数条件:f(x,y)仅为一个变量的函数。
柱面坐标法
适用被积区域Ω的投影为圆时,依具体函数设定,如设
①区域条件:积分区域Ω为圆柱形、圆锥形、球形或它们的组合;
②函数条件:f(x,y,z)为含有与 (或另两种形式)相关的项。
球面坐标系法
适用于被积区域Ω包含球的一部分。
①区域条件:积分区域为球形或球形的一部分,锥面也可以;
②函数条件:f(x,y,z)含有与 相关的项。
几何意义
三重积分就是四维空间的体积。
当积分函数为1时,就是其密度分布均匀且为1,三维空间质量值就等于其体积值。
当积分函数不为1时,说明密度分布不均匀。
应用
设Ω为空间有界闭区域,f(x,y,z)在Ω上连续
参考资料
最新修订时间:2024-04-03 16:48
目录
概述
定义
性质
参考资料