λ演算
形式系统
λ演算(英语:lambda calculus,λ-calculus)是一套从数学逻辑中发展,以变量绑定和替换的规则,来研究函数如何抽象化定义、函数如何被应用以及递归的形式系统。它由数学家阿隆佐·邱奇在20世纪30年代首次发表。lambda演算作为一种广泛用途的计算模型,可以清晰地定义什么是一个可计算函数,而任何可计算函数都能以这种形式表达和求值,它能模拟单一磁带图灵机的计算过程;尽管如此,lambda演算强调的是变换规则的运用,而非实现它们的具体机器。
简介
λ演算(英语:lambda calculus,λ-calculus)是一套从数学逻辑中发展,以变量绑定和替换的规则,来研究函数如何抽象化定义、函数如何被应用以及递归的形式系统。它由数学家阿隆佐·邱奇在20世纪30年代首次发表。lambda演算作为一种广泛用途的计算模型,可以清晰地定义什么是一个可计算函数,而任何可计算函数都能以这种形式表达和求值,它能模拟单一磁带图灵机的计算过程;尽管如此,lambda演算强调的是变换规则的运用,而非实现它们的具体机器。
lambda演算可比拟是最根本的编程语言,它包括了一条变换规则(变量替换)和一条将函数抽象化定义的方式。因此普遍公认是一种更接近软件而非硬件的方式。对函数式编程语言造成很大影响,比如Lisp、ML语言Haskell语言。在1936年邱奇利用λ演算给出了对于判定性问题(Entscheidungsproblem)的否定:关于两个lambda表达式是否等价的命题,无法由一个“通用的算法”判断,这是不可判定性能够证明的头一个问题,甚至还在停机问题之先。
lambda演算包括了建构lambda项,和对lambda项运行归约的操作。在最简单的lambda演算中,只使用以下的规则来建构lambda项:
产生了诸如:(λx.λy.(λz.(λx.zx)(λy.zy))(x y))的表达式。如果表达式是明确而没有歧义的,则括号可以省略。对于某些应用,其中可能包括了逻辑和数学的常量以及相关操作。
本文讨论的是邱奇的“无类型lambda演算”,此后,已经研究出来了一些有类型lambda演算。
发展历史
最开始,邱奇试图创制一套完整的形式系统作为数学的基础,当他发现这个系统易受罗素悖论的影响时,就把lambda演算单独分离出来,用于研究可计算性,最终导致了他对判定性问题的否定回答。
非形式化的直觉描述
在λ演算中,每个表达式都代表一个函数,这个函数有一个参数,并且会返回一个值。不论是参数和返回值,也都是一个单参的函数。可以这么说,λ演算中只有一种“类型”,那就是这种单参函数。函数是通过λ表达式匿名地定义的,这个表达式说明了此函数将对其参数进行什么操作。
例如,“加2”函数f(x)= x + 2可以用lambda演算表示为λx.x + 2(或者λy.y + 2,参数的取名无关紧要),而f(3)的值可以写作(λx.x + 2) 3。函数的应用(application)是左结合的:f x y =(f x) y。
考虑这么一个函数:它把一个函数作为参数,这个函数将被作用在3上:λf.f 3。如果把这个(用函数作参数的)函数作用于我们先前的“加2”函数上:(λf.f 3)(λx.x+2),则明显地,下述三个表达式:
是等价的。有两个参数的函数可以通过lambda演算这样表达:一个单一参数的函数,它的返回值又是一个单一参数的函数(参见柯里化)。例如,函数f(x, y) = x - y可以写作λx.λy.x - y。下述三个表达式:
也是等价的。然而这种lambda表达式之间的等价性,无法找到某个通用的函数来判定。
并非所有的lambda表达式都能被归约至上述那样的确定值,考虑
然后试图把第一个函数作用在它的参数上。(λx.x x)被称为ω组合子,((λx.x x)(λx.x x))被称为Ω,而((λx.x x x) (λx.x x x))被称为Ω2,以此类推。若仅形式化函数作用的概念而不允许lambda表达式,就得到了组合子逻辑
形式化定义
形式化地,我们从一个标识符(identifier)的可数无穷集合开始,比如{a, b, c, ..., x, y, z, x1, x2, ...},则所有的lambda表达式可以通过下述以BNF范式表达的上下文无关文法描述:
头两条规则用来生成函数,而第三条描述了函数是如何作用在参数上的。通常,lambda抽象(规则2)和函数作用(规则3)中的括弧在不会产生歧义的情况下可以省略。如下假定保证了不会产生歧义:(1)函数的作用是左结合的,和(2)lambda操作符被绑定到它后面的整个表达式。例如,表达式 (λx.x x)(λy.y) 可以简写成λ(x.x x) λy.y 。
类似λx.(x y)这样的lambda表达式并未定义一个函数,因为变量y的出现是自由的,即它并没有被绑定到表达式中的任何一个λ上。一个lambda表达式的自由变量的集合是通过下述规则(基于lambda表达式的结构归纳地)定义的:
例,对于表达式λx.x(我们将第一个x视作变量,第二个x视作表达式),其中表达式x中,由1,它的自由变量集合是x,又由2,表达式λx.x的自由变量的集合是表达式x的自由变量集合减去变量x。所以对于表达式λx.x,它的自由变量集合是空。
例,对于表达式λx.x x由形式化描述的第3点,我们把它看作((λx.x)(x)),(λx.x)和(x)分别为表达式,由上一例知道(λx.x)的自由变量集合为空,表达式(x)的变量集合为变量x,所以对于λx.x x,它的自由变量集合为x与空的并,即x。
在lambda表达式的集合上定义了一个等价关系(在此用==标注),“两个表达式其实表示的是同一个函数”这样的直觉性判断即由此表述,这种等价关系是通过所谓的“alpha-变换规则”和“beta-归约规则”。
参见
参考资料
最新修订时间:2023-04-18 09:59
目录
概述
简介
参考资料