X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出发的。宏观成像与微观成像有相通之处,如衬度原理、设备的主要组成部件等,但也有区别。
定义
X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出发的。宏观成像与微观成像有相通之处,如衬度原理、设备的主要组成部件等,但也有区别。由于X 射线显微镜是用来观察肉眼无法分辨的微观结构与图形,因而在仪器结构和要求上有显著不同,如要求光源尺寸小而强度大,要将像放大和高分辨等。
成像与构造
X 射线显微镜的成像原理与
光学显微镜基本上是一样的,遵从几何光学原理,其关键部件是成像和放大作用的光学元件,在光学显微镜中为透镜。由于X 射线的波长很短,在玻璃和一般物质界面上的折射率均接近1,故其成像放大元件不能用玻璃透镜,一般用波带片。
此外,它们同样利用吸收衬度和位相衬度成像,同样要求有强光源及像探测器。对
光学显微镜,一般用肉眼观察,故常加一目镜起进一步放大的作用。在X 射线显微镜中当然不能用眼晴直接观察,可用CCD 等面探测器探测。显微镜的重要性能指标两者是相似的,有放大倍数、分辨力、像差等几个。X 射线显微镜的一般构造:从强光源来的光束先经聚焦元件( 在此为毛细管透镜聚焦) 使光斑尺寸变小、亮度加大,然后射到样品上,透过样品的光,再经成像放大元件( 在此为波带片) 而到达探测器( 在此为闪烁体加CCD)。成像波带片和探测器之间有一个Au 位相补偿环,在相衬成像时用。如吸收衬度成像,可移走。
聚焦放大元件
常用的聚焦镜是多层膜反射聚焦镜和波带片,成像放大元件是波带片。
1 多层膜反射聚焦镜
多层膜是在基板上重复涂上两种不同的材料制成的人造一维晶体。通常,一种材料是高原子序数的重金属(H),另一种是低原子序数的非金属(L)。这两个层的厚度之和dH + dL构成这多层膜的重复周期d。dH 和dL 的大小与其比值及多层膜的性质有关。需按实验的要求来设计、制造,因此品种很多。最简单的是膜厚d 均匀的镜子,但也有膜厚d 是逐渐变化的镜子。镜面可以是曲面,可以是一维弯曲的(如圆筒面、抛物面或椭圆面等),也可以二维弯曲的(如球面或椭球面等)。发散光源放在椭圆的一个焦点上,反射光聚焦在另一个焦点上。
这种一维弯曲的聚焦镜只能在一个平面内起聚焦作用,得到的是线焦点,与此平面垂直的方向,射线仍保持原发散情况。若要两个方向都聚焦获得焦点可用两种方法:一是在两个方向上做二维弯曲;另一是将两块聚焦镜转过90° 先后放置,构成所谓的Kikpatrick-Baez (K-B)系统。K-B 系统有较多的实际应用。
2 Fresnel 波带片
Fresnel 波带片的原理早在100 多年前就已提出,但将其用于X 射线却是近十几年的事。是由两套不同材料制成的同心圆环交替排列构成的,其中一种材料透光,另一种不透光。
波带片称振幅波带片,其效率较低。为了提高效率,要将不透光的部分也变成透光这种波带片称相位波带片。理想的相位波带片,对一级聚焦,比振幅波带片提高了几倍。
3 毛细管
毛细管的聚焦作用是基于X 射线在毛细管内壁上的全反射,来改变X 射线的前进方向实现的。毛细管若是弯曲的,则会引导X 射线改变方向。毛细管不是等径而是锥状的,则X 射线就会在靠近出口处聚焦。它既可以聚焦单色X 射线,也可以聚焦白色X 射线。可聚焦的X 射线能量范围约从200 eV 至80 keV。
利用单根毛细管聚焦X 射线束的实物在20世纪80 年代已被实际应用。
美国康奈尔大学用
硼硅玻璃做的一根毛细管,长为1.6 m,粗头直径为470 μm,细头直径为110 μm。此管的反射效率对8 keV 的射线是49%,对13 keV 的射线为54%,对20 keV 的射线为34%。反射效率低于100%是因为毛细管的表面并不平整,一定的起伏和粗糙度会损失部分射线。从单根毛细管射出的光束的直径在出口处为最小,以后会慢慢增加。若毛细管出口直径为r,则工作距离为20 μm 至100 μm,此值是比较小的。Heald 等研究过毛细管的长度、进出口直径等参数与毛细管的透过率、强度增益倍数等性能的关系。
毛细管除了单根利用外,还可以集束应用。毛细管束,就是将数千根毛细管平行聚集在一起的元件,整体呈圆锥状。一个由336 根直径为17 μm 的玻璃毛细管组成的毛细管簇,可使光斑面积缩小至约1/20,功率密度可提高5 倍。
若入射光从毛细管锥体的大头入射,则从小头射出的光被聚焦;如入射光从较小的一头进去,则从较大的一头射出的光为平行光。与单毛细管相比,毛细管束的长度可以短,其焦点的面积会比单毛细管大一些,但焦点的位置离管口的距离也会大一些(有几公分),使用起来比较方便。毛细管束还可以是中间大两头小的双圆锥形。聚焦元件还有用单晶体做的和所谓的折射透镜,不过,它们在X 射线显微镜中用得不多。
光源
三类X 射线光源:实验室X 射线光源(X 射线管)、
直线加速器和
同步辐射装置。同步辐射是既近平行又高强度,且波长可调而成为最理想的光源。未见有将直线加速器用于X 射线显微镜,实验室光源有使用的,但不能用焦点在10 mm×1 mm 左右的封闭X 射线管,可以用高功率的旋转阳极X 射线管。另外,可用焦点尺寸在数十微米的细聚焦X 射线管,该管焦点小,但光亮度大,可达2×1011~1.2×1012 photos/s · sr,已接近同步辐射的光亮度,而且功耗很小,一般只有数十瓦,整机体积也小,适合作为实验室X 射线显微镜的光源。此外,还有用等离子X 射线源的。
从光源发射出的X 射线一般需先经聚焦使光斑进一步缩小,光亮度进一步增加才照到样品上。总的来说,实验室光源的光亮度比较低,仪器的分辨力也低,故实验室X 射线显微镜应用面不广,而同步辐射显微镜却发展得很快,做出了许多很有价值的工作。
探测器
各种探测器都可用,如感光胶片、影像板(Image plate, IP)、
影像增强器、
半导体探测器(CCD,电荷偶合器) 等。当然,宏观用的和微观用的在结构和参数上是不同的。
X 射线显微镜可按使用的X 射线能量的高低分为软X 射线显微镜和硬X 射线显微镜。其构造基本相同,但研究对象有侧重。前者较多应用于生物医学体系,后者较多应用于材料医学体系。如按其技术或原理来分类,则有透射式或扫描式显微镜、光谱显微镜、全息显微镜等多种。
透射式X
用波带片作为聚光镜、显微波带片作为成像放大物镜、CCD 为探测器, 分辨力可达10 nm。将样品连上了制冷装置( 氦气)、转动机构,并使CCD 与计算机连接,则可做断层扫描(CT),并从屏幕上直接观察CT 图。
水窗: 水窗是指从波长2.3 nm 至4.4 nm的一个波段范围。用此范围的X 射线入射于生物样品,水中含有的氧对它们的吸收很小( 40%),而有机体中的碳对它们的吸收却很高( > 60%),可以认为水对此波段的光是透明的,使水和氧间的衬度很高。故用此波段的光来观察含水生物样品,可避开氧吸收的干扰,清楚看到主要由碳构成的有机分子的构造。
透射式X 射线显微镜既可利用吸收衬度成像也可用相位衬度成像。这两类仪器在构造上略有差别,
相衬显微镜的聚光器不是单一的波带片,而是由环状孔径、波带片和针孔构成。环状孔径将入射光限制为一个环,波带片将其单色化并聚焦在位于针孔中的试样上,从试样出射的光经显微波带片和位于其背焦面附近的环状相位板( 添加位相) 而成像在探测器上。
扫描式X
在上述透射X 射线显微镜中,整个被研究物需完全暴露在入射光束中,探测器显示的是放大、完整的物像。在扫描式X 射线显微镜中入射光束一般被聚焦得很细小,如几十个纳米,故物体上只有一个很小的区域被光照射,探测器上只得到这一个点的放大图像,相对移动物体与光的位置,可逐点得到物体上各点的像,这些点像被逐点输入计算机,经处理后在显示器上显示出完整的图像。一般用扫描台实现,扫描步距可以为几个纳米。可以是光路不动,样品移动逐点扫描,也可以样品不动波带片扫描。一般是样品移动的分辨力较低,波带片扫描的分辨力较高。聚光波带片之后常有一个级次选择光阑(OSA),用来从波带片产生的不同级次的衍射光中选择需要的级次,并阻挡其他级次的光,以降低背景。
扫描式X 射线显微镜可以利用吸收衬度成像,也可用相位
衬度成像;可得到明场像,也可得到暗场像。
光谱显微镜
所谓光谱显微镜是将某种光谱和显微镜相结合的技术。此类技术颇多,只要这种光谱能产生一种与观察位置有关的信号,如透射光子的计数率、总的或特定的峰的光电子产率、荧光产率等,这些信号可以给出元素的、化学的、磁的等各种信息。
入射X 射线经两次多层膜反射聚焦到试样上,样品可在两个方向扫描,以得到整个图像。探测器依据需探测的信号的性质选择品种、安装位置等。如欲探测的是发生的多色荧光,则可用
固体探测器在反射位置探测;如探测的是单色的透射或衍射线,则可用
闪烁计数器或CCD等测定;如被探测的是光电子,则需用电子分析器探测。
NEXAFS
这是将X 射线吸收光谱与X 射线显微镜结合的技术。NEXAFS 是X 射线吸收光谱中靠近吸收边的那一段光谱。对一些有机或生物分子,如核酸与蛋白质、
聚苯乙烯PS 和
有机玻璃PMMA 或PEP 等,由于它们均由C、H、O等轻元素构成,利用一般的吸收衬度是不能区别的。但如选择某种特定波长的X 射线,则可将它们区分出来。这是因为在不同化合物中的C、H、O 有着不同的近邻配位结构,因而它们的外层能级结构不同,造成它们的X 射线近边吸收光谱不同,故可比较它们的NEXAFS 谱,找出它们的吸收有巨大差异的能量,用这种能量的X 射线入射,则一种物质吸收小而另一种吸收大,可以造成大的吸收衬度,明显地将它们加以区别。三元高聚物中三个组分PS、PMMA 和PEP 的NEXAFS 谱。可看出,在入射线能量为285.15 处,PS 吸收很大,另两个几乎不吸收;在能量为287.6 处,PEP吸收大,另两者吸收小;而在能量288.4 处是PMMA 吸收很大,而PS 和PEP 吸收很小。分别用这三个能量的单色X 射线做扫描X 射线显微镜观察,此三元聚合物中的大颗粒主要由PS 构成,PS 中存在许多小颗粒,是为PMMA,而大颗粒之间充填的是PEP。
磁X
同步辐射中所含的辐射均是偏振光,可以是线偏振光,也可以是椭圆或圆偏振光,X 射线也不例外。如果待测物质具有磁性,则具有不成对电子,具有
电子自旋磁矩和轨道磁矩。磁矩与不同方向的偏振光的作用是不同的,如用不同方向的圆( 线) 偏振光照射磁性材料,可以得到不同的吸收谱,该性质称圆( 线) 二色性。
把用左右圆( 线) 偏振光得到的不同的吸收谱相减就得到圆( 线) 二色谱。X 射线源来自一同步辐射装置中的椭圆波荡器,经前置镜使其准直,滤波后经一离轴波带片聚焦,再经单色器( 由三块平晶组成) 使其成为单色光,并聚焦到试样上,经试样吸收后的光用一显微波带片成像并放大,像用CCD 探测。在试样台上装有可以施加不同方向外磁场的系统。
光电子发射
光电子发射显微镜是利用X 射线在样品上激发出光电子来放大成像的装置。如要研究
磁性材料,则和磁显微镜一样,入射光需偏振X 光。
电子显微镜类似,由几个电磁透镜起成像放大作用。由四个不同磁矩方向( 用箭头表示) 的磁畴构成,入射圆偏振X 射线与不同磁畴的作用不同,激发出光电子不同,故所成之像不同,可区别出4个磁畴。
用波长与Co L3 吸收边的波长相同的X 射线照射,Co 层强烈吸收,Ni 层吸收少, 获得Co 层的磁畴像。颜色不同的区域表示磁化方向不同, Co 层内的磁化方向,是在平面内的;换用与Ni L3 吸收边能量相同的X 射线入射,则得到的是Ni 层的磁畴像。
磁畴呈条状平行排列,但磁化方向不在平面内,而是与平面垂直。Ni、Co 层的磁畴形状不同,但Co 层的结构似与Ni 层的条状结构有一些关系。
线偏振光以与样品表面小于15°角的方向入射,若是s 偏振,则电矢量与样品表面平行;若是p偏振,则电矢量与样品表面法线成15°角。利用能量位于Ni L 吸收边的线偏振光拍摄得到的Ni(100) 表面上的反铁磁畴的光电子发射像,呈现出Ni 表面条状的反铁磁畴结构。
全息显微术
已经知道,像是依靠吸收衬度( 光的振幅)或位相衬度一种信息来显现的。而所谓全息,是指同时含有振幅与位相两种信息。这是Gabor在1948 年提出的。由于记录介质实际可记录的信息只能是光强,也即振幅,故需将位相信息转换成强度来记录。把光照射到试样上,试样以球面波形式将其散射,如有另一束已知振幅与位相的、未经散射的直射参考光,两者的波前相遇时因经过的途程长度1与10不同,存在位相差,故会干涉,则合成的总强度是既与原光的振幅有关,又与两光的位相差有关。故此总强度包含了振幅与位相两种信息。这样的干涉图是全息图,并不是原物体的像,怎样才可从干涉图获得原物体的图像呢?需通过图像再现。这就要用激光来照射记录下的干涉图,其发出的波前仍和参考源相同,但其干涉图又与试样的波前一致,从而再现原物体。全息显微过程是由全息记录和波前再现两步构成的。
X 射线荧光全息(XFH)已被用来获取局域原子的结构。在荧光全息中,入射X 射线激发试样中感兴趣元素的荧光。荧光的一部分直接射向探测器,另一部分被其周围的原子散射,散射荧光射向探测器,与直射荧光发生干涉而得到这一方向k 的全息强度I(k)。在一个相当大的立体角范围内改变探测器的位置,也即改变方向,改变1、10 的长度,改变了位相差,则每一方向得到的干涉强度是不同的,其全体即为全息谱。
荧光全息还有另一种实现方法,为多能X射线全息(MEXH),其光路是XFH 的倒转,探测器和激发光源互换位置。入射光一部分被近邻原子散射,散射波到荧光发生原子处与直接到达的入射光发生干涉,荧光发生原子接受到的光强是上两光的干涉结果,故该原子发射的荧光强度是与干涉结果相关联的。与XFH 类似,改变入射光的位置,以得到不同方向的I(k),加合得到全息图。改变入射光的波长,可得不同波长的全息图,加大了倒易空间中的采样范围,避免像的畸变。加和这些全息图还可有效解决孪生像的问题。Marchesini 等用XFH 法研究了准晶Al70.4Pd21Mn8.6 的结构。
实验是在欧洲
同步辐射装置ID22 波荡器光束线上进行,入射光能量为16 keV。经积分变换得到的实空间的原子结构。联接其中最亮的12 个点可看出准晶的五角二十面体特征。
比较
各种显微镜均有自已的特色及适用范围。分辨力最高的是
电子显微镜,其次是X 射线显微镜。由于电子的穿透力非常低,故电子显微镜适用在表面形貌和结构的分析,而X 射线有强的穿透力,故可做块体分析,甚至做断层扫描(CT)。X 射线显微镜的另一特点是可与各种光谱结合成光谱显微镜,大大扩大了它的应用范围。