大统一理论
物理学理论
大统一理论(grand unified theories,GUTs),简称GUT,又称为万物之理,由于微观粒子之间仅存在四种相互作用力,万有引力电磁力强相互作用力弱相互作用力。理论上宇宙间所有现象都可以用这四种作用力来解释。通过进一步研究四种作用力之间联系与统一,寻找能统一说明四种相互作用力的理论或模型称为大统一理论。
研究背景
早在20世纪20年代,著名物理学家爱因斯坦就致力于寻找一种统一的理论来解释所有相互作用,也可以说是解释一切物理现象,因为他认为自然科学中“统一”的概念或许是一个最基本的法则。甚至可说在爱因斯坦的哲学中,“统一”的概念根深蒂固,他深信“自然界应当满足简单性原则”。
从30年代提出相对论后不久,爱因斯坦就着手研究“大统一理论”,试图通过“弱作用,磁场,强作用”的统一思维来简单的解释宇宙,进一步将当时已发现的四种相互作用统一到一个理论框架下,从而找到这四种相互作用产生的根源。这一工作一直到他1955年逝世为止,并几乎耗尽了他后半生的精力,而且统一思维与当时物理学界的主流思想不符,以致于一些科学史学家断言这是爱因斯坦的一大失误。
研究过程
弱电统一理论
60年代格拉肖、温柏格、萨拉姆三位科学家提出弱电统一理论,把弱相互作用和电磁相互作用统一起来,这种统一理论可以分别解释弱相互作用和电磁相互作用的各种现象,并预言了几种新的粒子,他们因此荣获1979年诺贝尔物理学奖,1983年实验发现了理论中预言的粒子,进一步证明了理论的正确性。
1973年,美国科学家帕提(Jogesh Pati,1937- )和萨拉姆提出了统一描述夸克和轻子的帕提-萨拉姆模型,预言了质子的衰变。
自然界一共有4种相互作用,除了引力相互作用和电磁相互作用外,还有强相互作用和弱相互作用。这4种相互作用强度大小和作用范围都相差悬殊,也大相径庭。例如,引力的强度只有强相互作用力的100万亿亿亿亿分之一,引力的作用范围却非常大,从理论上说可以一直延伸到无限远的地方,引力是长程力;而强相互作用力的范围却很小很小,只有1厘米的10万亿分之一,说强相互作用力是短程力;弱相互作用力也是短程力,力程不到1厘米的1000万亿分之一,强度是强相互作用力的1万亿分之一;电磁力与引力一样是长程力,但它的强度要比引力大得多,是强相互作用力的1/137。4种相互作用在性质上看来有明显的差异,然而科学家们却在思索:自然界为什么有这4种相互作用?这4种相互作用是否只有差异而无共同之处?这4种相互作用能不能在一定条件下得到统一的说明?从科学史来看,第一个认真思索并付诸行动的是物理学家爱因斯坦。爱因斯坦在完成广义相对论的理论建设后,就一直在考虑能不能把引力相互作用和电磁相互作用统一起来。
统一引力和电磁力几乎成了爱因斯坦中老年时期所要攻克的主要目标,然而遗憾的是爱因斯坦终究没有完成这一伟大的工程。自幼就崇敬爱因斯坦的温伯格十分赞赏统一思想。但是既然引力和电磁力的统一障碍重重,那能不能先统一其他相互作用呢?从60年代起,温伯格就着手弱相互作用与电磁相互作用的统一。统一之路并不平坦,温伯格甚至不清楚该从哪里入手。从50年代末到60年代,在基本粒子理论领域里,对称性自发破缺理论获得了较大的发展。例如,李政道和杨振宁在1956年就已发现弱相互作用里的一种破缺对称性(即破缺手征对称性)。所谓对称性自发破缺理论,通俗地说,它认为一些不同的现象或规律可追溯到同一源头,最初有着共同的对称性,后来由于种种原因对称性被自发地破坏,这样我们就可以从对称性来研究它们的共性,从对称性自发破缺机制来研究它们的特殊性。1965年起温伯格也开始了关于对称性自发破缺理论的研究,并渐渐意识到这将是通向相互作用统一理论的合适道路。1967年秋,温伯格终于确定弱相互作用和电磁相互作用可根据严格的、但自发破缺的规范对称性的思想进行统一的表达。他的理论结果发表在这一年的《物理评论快报》上,题目是“一个轻子的模型”。
这是科学上第一个成功的相互作用统一理论。理论中所预言的中间玻色子W和Z,在1983年被欧洲核子研究中心找到。弱电统一理论的成功,肯定了相互作用统一思想的正确性,促使许多科学家进一步去研究把强相互作用、弱相互作用和电磁相互作用统一在一起的大统一理论,以及把引力相互作用也统一进去的巨统一理论。
强、弱、电磁三种作用统一理论
70年代中期,人们进一步提出强、弱、电磁三种作用统一的大统一理论。大统一理论的结论之一是预言质子要衰变,这与实验结果有矛盾。
引力在其中的关系
将引力统一到这一图像中之所以如此困难,这是因为引力与其他三种自然力相比极其微弱。不过,在某种意义下,引力和电磁力同样简单和易于处理,因为它只要求一种传达粒子,即无质量的引力子
质子组成的氢原子,靠的不是引力,而是强度更大的电磁力。到底多大呢?大10^40倍。正如法国物理学家和作家蒂阿纳所说:‘如果没有电磁力,仅仅在引力的作用下的话,1个氢原子就将充满整个世界。引力非常微弱,不可能使电子和质子结合的如此紧密.......除非能将引力与其他三种力统一起来,否则就不会存在‘万物理论’,或者大统一理论这类的现代科学的圣杯。
将引力包括到TOE中的困难,可以通过考察四种基本力如何从一种统一的相互作用中‘分裂’出来而得到了解,物理学家认为这种‘分裂’应发生在宇宙由大爆炸中刚产生之时。光子与中介矢量玻色子和胶子的本质差别之一,是光子没有质量,其他粒子却有质量。光子因没有质量而容易被创造,且能够(原则上)在整个宇宙范围内传播。传达弱力和强力的玻色子则做不到这点。在一次相互作用中,‘创造’特定玻色子组所需要的质量是按照量子力学的测不准原理向真空借来的。但测不准原理指出,这些所谓的‘虚’粒子能够不时出现和随即消失,条件是它们不能存活过久以避免被宇宙‘注意’到它们的存在。这样一个粒子的质量越大,它在短暂生存期需要借用的能量越多,它也就必须越快地偿还债务。这就限制了玻色子在完成任务并消失之前运动所及的范围。
局限在原子核内部的短程粒子
但是,当宇宙很年轻时,它浸泡在原始火球的能量大海之中。只要这一能量的密度足够高,即使是胶子和中介矢量玻色子也能从火球抽取足够能量而变成真实的粒子,并在火球中到处游荡。那时,它们真正与光子等效,而不仅仅是类似;所有基本相互作用也都是同样强和远程的作用。随着宇宙膨胀和冷却,它们逐步失去部分能耐,变成了我们看到的局限在原子核内部的短程粒子。
引力仍然独树一帜。根据最好理论,当作为整体的宇宙温度为时,引力与所有其他力一样强。 当宇宙开始平缓膨胀和冷却时,其他三种力仍然是统一的。在开始之后秒、温度达到时,宇宙冷却到不能供养强力的载体,于是强力被局限在我们所见的距离以内。到秒时,温度为,宇宙冷却到无法维持中介矢量玻色子,于是弱力也变成了短程力。这是在整个宇宙的温度与地球上的粒子加速器迄今达到的最高能量相当的时期发生的——弱电理论之所以比QCD远为坚实可靠,这就是原因之一(因为能够与实验进行比较)。
由上述图像不难看出将引力包括到统一理论中的困难所在。然而有趣的是,还在发现强和弱两类相互作用之前,引力就已经与电磁力包括到一个统一理论中了!对统一理论的这一探讨,在两种‘附加’力发现之后很多年内基本上被人遗忘,而它算得上是长期追求万物之理征途上的领跑人。
卡鲁扎-克莱因理论
广义相对论用的曲率来描述引力。阿尔伯特·爱因斯坦提出这一概念后不久,就发现用与爱因斯坦广义相对论方程式等效的方程式来描述五维曲率时,就得到我们熟知的、与麦克斯韦电磁场方程式并列的爱因斯坦理论中的场方程式。几年以后的1920年代,引力和电磁场这种五维形式的统一甚至推广到包括了量子效应,这就是后来以两位开创此项研究的先驱科学家姓氏命名的卡鲁扎-克莱因理论。
计算中涉及增加额外维度的所有理论都叫做卡鲁扎-克莱因理论,但这种处理方法长期无人采用,因为,要把卡鲁扎-克莱因理论最初获得成功后就发现了的更复杂的弱和强相互作用效应包括进来,它要求的就不是一个而是好几个‘额外’维度。如果说光子是第五维度中的涟漪,那么(粗略地说)Z粒子就可以看成是第六维度中的涟漪,等等。
有两个原因使这类理论在1980年代再次流行。第一,构建大统一理论的尝试复杂到了令人厌烦的程度,其中有一些看来无论如何也必须增加额外维度才能进行下去。既然总归需要很多额外维度,为什么不用卡鲁扎-克莱因的办法呢?第二,数学物理学家开始对弦理论感兴趣,在弦理论看来,人们习惯视为点状粒子的实体可描述成一维‘弦’的细小片断(远远小于质子)。弦理论也只有在很多维度下才能‘工作’,它给我们极为丰厚的回报——引力。
理论家们以推导各种描述这类多维弦相互作用的方程式自娱,他们发现有些方程式描述的封闭弦环正好具有引力描述所要求的性质——弦环实际上就是引力子。
弦理论
弦理论(string theory)是理论物理学上的一门学说。弦论的一个基本观点就是,自然界的基本单元不是电子、光子、中微子和夸克之类的粒子。这些看起来像粒子的东西实际上都是很小很小的弦的闭合圈(称为闭合弦或闭弦),闭弦的不同振动和运动就产生出各种不同的基本粒子。弦论是最有希望将自然界的基本粒子和四种相互作用力统一起来的理论。
超弦理论
超弦理论、M理论和黑洞物理学
超弦理论是物理学家追求统一理论的最自然的结果。爱因斯坦建立相对论之后自然地想到要统一当时公知的两种相互作用--万有引力和电磁力。他花费了后半生近40年的主要精力去寻求和建立一个统一理论,但没有成功。回过头来看历史,爱因斯坦的失败并不奇怪。实际上自然界还存在另外两种相互作用力--弱力和强力。已经知道,自然界中总共4种相互作用力除有引力之外的3种都可有量子理论来描述,电磁、弱和强相互作用力的形成是用假设相互交换“量子”来解释的。但是,引力的形成完全是另一回事,爱因斯坦的广义相对论是用物质影响空间的几何性质来解释引力的。在这一图像中,弥漫在空间中的物质使空间弯曲了,而弯曲的空间决定粒子的运动。人们也可以模仿解释电磁力的方法来解释引力,这时物质交换的“量子”称为引力子,但这一尝试却遇到了原则上的困难--量子化后的广义相对论是不可重整的,因此,量子化和广义相对论是相互不自洽的。
超弦理论最引人注目,它距完成超对称统一理论还相当遥远。粒子理论的一个重要探索方向是关于超对称统一理论的研究,其目标一是把大统一理论扩大到包括万有引力在内,从而把四种基本相互作用统一到一起来;二是探索夸克轻子的内部结构,提出“亚夸克”模型,从而把自旋半整数费米子和自旋为整数的玻色子统一到一起。
超弦理论是人们抛弃了基本粒子是点粒子的假设而代之以基本粒子是一维弦的假设而建立起来的自洽的理论,自然界中的各种不同粒子都是一维弦的不同振动模式。与以往量子场论和规范理论不同的是,超弦理论要求引力存在,也要求规范原理和超对称。毫无疑问,将引力和其他由规范场引起的相互作用力自然地统一起来是超弦理论最吸引人的特点之一。因此,从1984年底开始,当人们认识到超弦理论可以给出一个包容标准模型的统一理论之后,一大批才华横溢的年轻人自然地投身到超弦理论的研究中去了。
大统一理论的困难
著名的物理学家沈志远提出时空是不连续的吗?20世纪物理学流行的名词是“量子化”,能量、动量、角动量等物理量都是量子化的.量子场论一次量子化还不够,再来个二次量子化.几十年来,物理学家提出各种版本的“万物之理”(统一场论):弦论、圈论、旋子论、扭子论、时空非互易论等,绝大多数基于时空量子化.认为时间和空间都具有最小单元——普朗克时间(10-43秒)和普朗克长度(10-35米)。问题出在他们认为比普朗克时间和普朗克长度更小的时间和空间根本不存在,从而否认时空单元具有内涵.著名圈论研究者斯莫林在专论《时间与空间是什么》的书中强调时间和空间的离散性而否认其连续性,认为连续空间只是“幻觉”(illusion)。在他看来这是通向统一场论的必由之路。这种观点在统一场论界具有代表性.否认连续性偏离量子论主旨。量子化引入离散的量子,但并不否认连续性.以电磁场为例,其能量以光子为单元是离散的,但空间中的电磁场和电磁波却都是连续的。而且正是对连续的电磁场作傅里叶分析,才在封闭空间中得出离散能量谱,在开放空间中则得出连续能量谱。
大统一理论把夸克和轻子看成一种粒子的不同状态,用数学的话来说,大统一理论把夸克和轻子填在同一线性表示里,通过SU(5)规范作用把它们联系起来.强相互作用、弱相互作用和电磁相互作用在非常高的能量(百万亿倍质子的静止能量级,质子静止能量约为10亿电子伏特)下统一成一种SU(5)规范相互作用.随着能量下降,通过黑格斯场的第一次破缺,描写强相互作用的SU(3)对称性和描写弱电相互作用的SU(2)× U(1)对称性分开来了。能量继续下降,在100倍质子静止能量量级,黑格斯场发生第二次破缺,电磁作用和弱作用又分开了,形成实验观测到的三种相互作用.在大统一理论中,夸克和轻子可以通过SU(5)规范场相互转化,原则上质子不再是稳定的,它可能衰变成介子和轻子.尽管理论预言质子衰变的寿命非常长,平均寿命约为1031年,但是质子不稳定造成原子核不稳定,由原子分子构造起来的物质都将是不稳定的。80年代初以来,人们密切注视着实验的发展,但是实验没有观测到大统一理论所预言的质子衰变现象.当然这类实验比较难做,有很强的背景干扰(如宇宙射线干扰),还有人在不断地改进设备和方法,努力寻找质子衰变的事例,人们公认的实验结果是质子的平均寿命大于1032年,所以实验不支持SU(5)大统一模型。
强、弱、电三种相互作用并未得到真正的统一,标准模型也只是一个唯象的理论,其中含有十几个可调参数、任意性太大.物理学家希望,真正的统一方案应该用一个单群来描述三种相互作用的对称性、并且在理论中只出现一个耦合常数来描述相互作用强度,更具体一些说,三种相互作用具有不同的强度,这只是在低能量情况下的行为、是对称性发生破缺的结果.而在更高的能量标度上,三种相互作用统一成为一种力,只有一个作用强度.就像是麦克斯韦方程把电力和磁力统一成为一种电磁相互作用。 
标准模型(Standard Model)是几代物理学家辛勤努力的结果。标准模型用来解释宇宙中最基本的组成粒子以及其间的交互作用力,物理学家们认为物质粒子共有六种夸克和三种轻子;物质粒子间的作用力有四种:电磁力、万有引力、强相互作用力和弱相互作用力。标准模型中不包括引力。标准模型似乎是很完善了,但是标准模型不能解释如下的基本事实:无论是核裂变还是核聚变,都会产生大量的中子、中微子和伽马光子(许多中微子的研究就在核反应堆附近进行)。这就是说,物质中有中子、中微子和伽马光子,我们知道,中微子是一种神秘的宇宙粒子,具有不可思议的极强的穿透能力,能够自由地穿过墙壁、山脉、甚至地球与其他行星.物理学家估计,中微子能够自由穿透厚度比地球到太阳的距离还高出几十亿倍的铁板.如果有数光年厚的一个铅做成的壁垒的话,中微子也能从容穿过。这就是说,中微子几乎不同物质发生相互作用.中微子既在物质中存在,但一旦离开了物质,又几乎不再同物质发生相互作用.这是为什么?既然中微子在物质中存在,那么我们要问:中微子为什么能够在物质中存在?换句话说,中微子是被何种粒子的何种作用力囚禁在物质之中的?标准模型不能解释,因为标准模型中不包含囚禁中微子的力.至于伽马光子,同样的问题仍然存在.伽马光子既存在于物质中,又几乎不同任何物质产生相互作用.伽马光子只能感受巨大的引力,但是标准模型中不包括引力。即使标准模型中包括引力,对伽马光子来说也没有什么用处,因为已知的物质粒子的静止质量根本不能提供足以囚禁伽马光子的极其巨大的引力.既然伽马光子在物质中存在,那么我们要问:伽马光子为什么能够在物质中存在?换句话说,伽马光子是被何种粒子的何种作用力囚禁在物质之中的?标准模型不能解释,因为标准模型中不包含囚禁伽马光子的力。
参考资料
最新修订时间:2024-11-24 21:41
目录
概述
研究背景
参考资料