电离层之一,指位于D层之上、F层之下,高度约90~140千米的电离层区域。电子密度在103~105厘米-3之间。在中、低纬度地区,电子密度峰值所在的高度通常为100~120千米。在夜间,E层电子密度峰值一般为5×103厘米-3。太阳紫外线(1000~1020埃)和X射线(10~170埃)是E层的主要电离源。E层主要离子成分是和NO+。
电子密度在103~105厘米-3之间。在中、低纬度地区,电子密度峰值所在的高度通常为100~120千米。在夜间,E层电子密度峰值一般为5×103厘米-3。太阳紫外线(1000~1020埃)和X射线(10~170埃)是E层的主要电离源。E层主要离子成分是和NO+。
电离层(Ionosphere)是地球大气的一个电离区域。电离层(ionosphere) 受太阳高能辐射以及宇宙线的激励而电离的大气高层。60千米以上的整个地球大气层都处于部分电离或完全电离的状态,电离层是部分电离的大气区域,完全电离的大气区域称磁层。也有人把整个电离的大气称为电离层,这样就把磁层看作电离层的一部分。除地球外,金星、火星和木星都有电离层。电离层从离地面约50公里开始一直伸展到约1000公里高度的地球高层大气空域,其中存在相当多的自由电子和离子,能使无线电波改变传播速度,发生折射、反射和散射,产生极化面的旋转并受到不同程度的吸收。
电离层形态是电离层中电子密度等基本参量的空间结构(高度和经纬度分布)及其随时间(昼夜、季节和太阳活动周期)变化的情况。电离层可从低到高依次分为D层、E层和F层等,其中F层还可分为F1层和F2层。E层和F1层中,电子迁移作用较小,具有查普曼层的主要特性。层的临界频率П(其平方正比于峰值电子密度)与太阳天顶角ě近似地满足由简单层理论所导出的关系式П=ɑcosě(兆赫),式中ɑ和b为常数。这个关系式反映了电离层电子密度随时间和地区变化的基本趋势。在较高的F2层,电离输运起着重要作用;在地球磁极,存在着外来带电粒子的轰击,形态更为复杂。D层和F1层的峰形一般并不很凸出。
离地面约50~90公里。白天,峰值密度NmD和相应高度hmD的典型值分别为10厘米和85公里左右。无线电波中的短波在该层受到较大的吸收。太阳活动最高年的吸收几乎是最低年的两倍。一年之中,NmD的夏季值大于冬季值,但在中纬地区,冬季有时会出现异常吸收。夜间,电离基本消失。
①F1层(离地面约130~210公里):白天,峰值密度NmF1及其相应高度hmF1的典型值分别为2×10厘米和180公里。F1层峰形夜间消失,中纬度F1层只出现于夏季,在太阳活动高年和电离层暴时,F1层变得明显。NmF1和hmF1的变化与E层类似,大致符合简单层的理论公式,这时ɑ≈4.30.01R,b≈0.2。
②F2层(离地面约210公里以上):反射无线电信号或影响无线电波传播条件的主要区域,其上边界与磁层相接。。在任何季节,NmF2的正午值都与太阳活动性正相关。hmF2与太阳活动性一般也有正相关关系,除赤道地区外,夜间值高于白天值。在F2层,地球磁场大气各风系、扩散和其他动力学因素起着重要的作用,其形态变化不能用查普曼的简单层理论来描述,于是F2层比起E层和F1层便有种种“异常”。所谓日变化异常是指F2层电子密度的最大值不是出现在正午(通常是在本地时间13时至15时),同时NmF2还具有半日变化分量,其最大值分别在本地时间上午10~11时和下午22~23时。季节异常是指F2层正午的电子密度在冬季要比夏季高。赤道异常是指F2层电子密度并不在赤道上空最大,它明显地受地磁场控制,其地理变化呈“双峰”现象,在磁纬±20度附近达到最大值。在高纬度地区,可观测到许多与带电粒子沉降有关的异常现象。其中,最为重要的是F层“槽”,这是地球背阳面上从极光圈开始朝向低纬宽约5~10度的低电子密度的带区。