Elman神经网络
电子与信息技术领域术语
Elman神经网络是 J. L. Elman于1990年首先针对语音处理问题而提出来的,是一种典型的局部回归网络( global feed forward local recurrent)。Elman网络可以看作是一个具有局部记忆单元和局部反馈连接的递归神经网络
主要结构
它的主要结构是前馈连接, 包括输入层、 隐含层、 输出层, 其连接权可以进行学习修正;反馈连接由一组“结构 ” 单元构成,用来记忆前一时刻的输出值, 其连接权值是固定的。在这种网络中, 除了普通的隐含层外, 还有一个特别的隐含层,称为关联层 (或联系单元层 ) ;该层从隐含层接收反馈信号, 每一个隐含层节点都有一个与之对应的关联层节点连接。关联层的作用是通过联接记忆将上一个时刻的隐层状态连同当前时刻的网络输入一起作为隐层的输入, 相当于状态反馈。隐层的传递函数仍为某种非线性函数, 一般为 Sigmoid函数, 输出层为线性函数, 关联层也为线性函数。
参考资料
最新修订时间:2023-05-19 13:39
目录
概述
参考资料