在数学中,反三角函数(偶尔也称为弓形函数(arcus functions),反向函数(antitrigonometric functions)或环形函数(cyclometric functions))是
三角函数的
反函数(具有适当的限制
域)。 具体来说,它们是
正弦,
余弦,
正切,余切,正割和辅助函数的反函数,并且用于从任何一个角度的三角比获得一个角度。 反三角函数广泛应用于工程,导航,物理和几何。
在数学中,反三角函数(偶尔也称为弓形函数(arcus functions),反向函数(antitrigonometric functions)或环形函数(cyclometric functions))是
三角函数的
反函数(具有适当的限制
域)。 具体来说,它们是正弦,余弦,正切,余切,正割和辅助函数的反函数,并且用于从任何一个角度的三角比获得一个角度。 反三角函数广泛应用于工程,导航,物理和几何。
反余切函数(反三角函数之一)为余切函数y=cotx(x∈[0,π])的反函数,记作y=arccotx或coty=x(x∈R)。由原函数的图像和它的
反函数的图像关于一三象限角平分线对称可知余切函数的图像和反余切函数的图像也关于一三象限角平分线对称。
由原函数的图像和它的
反函数的图像关于一三象限角平分线对称可知余切函数的图像和反余切函数的图像也关于一三象限角平分线对称。
反三角函数的三角函数如下式所示。 推导它们的一个快速方法是通过考虑直角三角形的几何形状,其长度为1的一侧,长度x的另一侧(0和1之间的任何实数),然后应用勾股定理和三角比。
对于0和π附近的角度,从而计算出计算机实现中精度降低的角度(由于位数有限). 类似地,对于π/ 2和π/ 2附近的角度,反正弦不准确。